
ON THE USE OF SURROGATE FUNCTIONS

FOR MIXED VARIABLE OPTIMIZATION OF

SIMULATED SYSTEMS

THESIS

John Elliott Dunlap, First Lieutenant, USAF

AFIT/GOR/ENS/05-06

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The views expressed in this dissertation are those of the author and do not reflect the

official policy or position of the United States Air Force, the Department of Defense, or the

United States Government.



AFIT/GOR/ENS/05-06

ON THE USE OF SURROGATE FUNCTIONS FOR MIXED

VARIABLE OPTIMIZATION OF SIMULATED SYSTEMS

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment for the Requirements for the

Degree of Master of Science in Operations Research

John Elliott Dunlap, B.S.

First Lieutenant, USAF

March 2005

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



AFIT/GOR/ENS/05-06

ON THE USE OF SURROGATE FUNCTIONS FOR MIXED

VARIABLE OPTIMIZATION OF SIMULATED SYSTEMS

John Elliott Dunlap, B.S.

First Lieutenant, USAF

Approved:

Dr. James W. Chrissis Date
Thesis Advisor

Lt Col Mark A. Abramson Date
Reader



AFIT/GOR/ENS/05-06

Abstract

This research considers the efficient numerical solution of linearly constrained mixed

variable programming (MVP) problems, in which the objective function is a "black box"

stochastic simulation, function evaluations may be computationally expensive, and deriv-

ative information is typically not available. MVP problems are those with a mixture of

continuous, integer, and categorical variables, the latter of which may take on values only

from a predefined list and may even be non-numeric. Mixed Variable Generalized Pattern

Search with Ranking and Selection (MGPS-RS) is the only existing, provably convergent

algorithm that can be applied to this class of problems. Present in this algorithm is an

optional framework for constructing and managing less expensive surrogate functions as a

means to reduce the number of true function evaluations that are required to find approx-

imate solutions.

In this research, the NOMADm software package, an implementation of pattern search

for deterministic MVP problems, is modified to incorporate a sequential selection with

memory (SSM) ranking and selection procedure for handling stochastic problems. In

doing so, the underlying algorithm is modified to make the application of surrogates more

efficient. A second class of surrogates based on the Nadaraya-Watson kernel regression

estimator is also added to the software. Preliminary computational testing of the modified

software is performed to characterize the relative efficiency of selected surrogate functions

for mixed variable optimization in simulated systems

iv



Acknowledgments

I would like to express my sincere appreciation and gratitude to my faculty advisor,

Dr. James W. Chrissis, for his generous guidance, patience, and support throughout the

course of this thesis effort. His timely insights and gentle nudges made this work manage-

able. I would also like to thank my reader, Lt Col Mark A. Abramson, for sparking my

interest in pattern search methods, guiding me to its correct application for this research,

and molding this document to adequately express my thoughts. As a direct result of your

efforts, I am now proud of this final product. Additionally, I would like to thank Maj Todd

A. Sriver upon whose work a majority of this thesis is based and for leading me toward

some of the more important issues.

Most importantly, I want to say a special thank you to my family for all of their love

and sacrifice. First to my wife, whose support and encouragement have allowed me to

succeed. Her persistence and guidance during this endeavor enabled me to focus on the

task at hand while never forgetting what is really important in life. Finally to my children,

for their patience and understanding when I had to "go to school" while remaining at home

during all of those evenings and weekends, thank you.

John E. Dunlap

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Use of Stochastic Simulation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Generalizing the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Unconstrained Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Newton-based Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Guaranteeing Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Suitability of Derivative-based Methods . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Search Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



Page

2.3.2.2 Evolution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Suitability of Search Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Generalized Pattern Search (GPS) Methods . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Pattern Search Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Extensions to Constrained Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 General Pattern Search Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.4 Suitability of Generalized Pattern Search (GPS) Methods . . . . . . . . . 37

2.5 Implementation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 3. APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Mesh and Poll Set Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Optimality for Mixed Variable Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Bound and Linear Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 MGPS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Proposed Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.1 Search Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 R&S Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Implementation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 4. COMPUTATIONAL EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vii



Page

4.1 Research Surrogates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Kernel Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.2 Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Surrogate Sampling Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Latin Hypercube Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 The Merit Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.3 The Trust Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Implementation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Design of Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Deterministic Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 Pilot Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3 Main Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.1 Main Run Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.2 R&S Modification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 5. CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . 89

5.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.1 Nonlinear Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.2 R&S Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



Page

5.1.3 Surrogate Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Appendix A. SUPPORTING DATA SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.1 Deterministic Run Data Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 Pilot Study Data Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.3 Main Run Data Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.4 R&S Procedure Adjustment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.5 Modified Main Run Data Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

ix



List of Figures

Figure Page

1.1 Simulation-Based Optimization Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 General Optimization Algorithm (adapted from Nash and Sofer [43]) . . . . . 13

2.2 Backtracking Line Search (adapted from Dennis and Schnabel [19]) . . . . . 17

2.3 General Simulated Annealing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 General Genetic Algorithm (adapted from Spall [54]) . . . . . . . . . . . . . . . . . 24

2.5 General Evolution Strategies Algorithm (adapted from Spall [54]) . . . . . . . 25

2.6 General Pattern Search Algorithm (adapted from Audet and
Dennis [6]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Triangular Continuation Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Tangent Cone Near Boundary (adapted from Lewis and
Torczon [36]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 MGPS Algorithm for Deterministic Optimization (adapted
from Abramson [2]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Triangular Continuation Region for SSM . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Sequential Selection with Memory (adapted from Pichitlamken
and Nelson [48]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Modified MGPS Algorithm for Simulation Optimization . . . . . . . . . . . . . . 65

4.1 Examples of Latin Hypercube Samples of Strengths 1 and 2. . . . . . . . . . . . 74

x



ON THE USE OF SURROGATE FUNCTIONS FOR MIXED

VARIABLE OPTIMIZATION OF SIMULATED SYSTEMS

Chapter 1 - Introduction

1.1 Problem Setting

Consider the problem of optimizing a real system in which the objective is to find a

set of controllable parameters that minimizes some measure of performance. To validate

the results, direct experimentation on the system is preferred, but is not always possible,

due to technological or cost restrictions. In this case, a common practice is to create a

mathematical model of the system in terms of logical and quantitative relationships [33].

For a given performance measure with a defined level of abstraction, a valid mathematical

model can usually be derived which accurately represents the behavior of the actual system.

If the mathematical model is simple enough, then an analytic optimal solution may exist

in closed form. However, for more complex models, simulated mathematical models (often

referred to as simulation models) can produce representative outputs of the real system.

The focus of this research is on simulation-based models.

Due in part to the ease of changing simulation configurations, simulation models have

become popular in performing such tasks as characterizing system behavior, aiding in the

design of real systems, and examining alternatives through what-if scenarios to improve

the related system performance. For example, simulation models are routinely constructed

to determine costs associated with manufacturing, warehousing, ordering, and shipping of

goods under different production disciplines. If the system constraints and performance

measure(s) of interest are modeled in the simulation, then the simulation responses can be

used with an optimization algorithm to determine production strategies that optimize a

performance measure for the underlying system. The resulting model solution can thus

1
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Figure 1.1. Simulation-Based Optimization Method

assist decision makers in developing proper courses of action by augmenting their knowledge

of the actual system.

The term simulation-based optimization describes methodologies where complex sys-

tems are "designed, analyzed, and controlled by optimizing the results of computer simu-

lations" (Kolda et al. [31]). As illustrated in Figure 1.1, the complex mathematical model

representing the system is simulated (usually repeatedly) at a design point specified by an

optimization algorithm, generating a response that is an estimate of the system’s perfor-

mance measure. In this context, simulation is defined as a numerical procedure that takes

a design vector of inputs and generates a response based on underlying model relationships.

For a given level of abstraction, a valid model can represent the system’s set of controllable

parameters as an input design vector. Using the abstracted design vector as input, the

model generates an estimate of the system’s performance measure. The resulting model

response is then used by an optimization algorithm to introduce a new set of input design

points to be evaluated by the model. The optimization algorithm thus acts on the model,

rather than on the actual system, in order to optimize the performance measure. Under

2



the assumption of model validity, the set of controllable system parameters that optimize

actual system performance will directly correspond to the resulting optimal design vector.

Although both cases are applicable to this research, it is important to note that these

simulation models can be classified into two groups, depending on the presence of random

(or probabilistic) components in the model. Simulation models that do not contain random

components are called deterministic models. Deterministic models do not include random

components; they explicitly represent the underlying system, usually by the use of schedules

or differential equations. Although these models are generally analytically intractable, the

model needs to be run only once at a particular design vector to produce a unique response

of the associated system performance.

Simulation models which contain random components are called stochastic models.

When modeling the actual system of interest, random components are often used to rep-

resent the uncertainty of the input parameters in the model. Although these simulation

models are better able to account for the uncertainty, random components produce ran-

dom noise in the evaluation of the response function; thus, the outputs from stochastic

models are often referred to as random responses. To reduce the error in estimating the

true response, repeated sampling of a particular design vector is traditionally performed to

generate a distribution of the associated system performance. Although a response distri-

bution can be generated from repeated sampling, in this research the simulation model will

be assumed to have a terminating condition that produces a single response. Therefore,

approaches used in non-terminating simulation models to estimate a performance measure,

such as replication/deletion and batching means (see Law and Kelton [33]), are not required.

Random noise in the evaluation of the responses from stochastic simulation models

requires special attention when estimating the performance measure. In the case of de-

3



terministic models, the simulation response F (x) is a noise-free estimator of the system

performance f(x), which is dependent only upon the design vector x; thus expected per-

formance is given by

f(x) = E[F (x)] (1.1)

where x ∈ Rn is the design vector. In the case of stochastic models, the response of the

simulation F (x,ψ) depends not only on the design vector x, but also on the random noise

of the system ψ; thus expected performance is given by

f(x) = E[F (x, ψ)] =

∫

Ω
F (x, ψ)P (dψ) (1.2)

where x is the design vector, ψ ∈ Ψ is an element of an underlying probability space

(Ψ,F , P ) with sample space Ψ, sigma-field F , and probability measure P . Because the

responses are generated from a “black box” system and the simulations are analytically

intractable, the probability distribution that defines F (x,ψ) is assumed to be unknown but

can be sampled. In both deterministic and stochastic models, the simulation responses F (·)

provide an estimate of the system performance f(x). Therefore, the objective function f

of the underlying system is optimized by systematically improving the simulation response

function F.

In order to optimize the underlying system, the simulation response can be systemat-

ically improved by the use of an appropriate optimization algorithm. However, the choice

of an algorithm is restricted by certain assumptions. In this research, the simulation re-

sponse is assumed to originate from a “black box”; thus analytical derivatives are typically

not available. Furthermore, the responses may have few correct digits; therefore, approxi-

mation of the gradient by techniques such as finite differencing or simultaneous perturba-

tion (see Spall [54]) may be unreliable. The applicable methods for this research can be

4



further restricted by allowing objective or constraint functions to be discontinuous, have

undefined regions, or fail to return a solution at certain design points. Because of these

considerations, gradient-based optimization algorithms cannot be effectively applied.

The selection of an applicable optimization algorithm is also restricted by the presence

of categorical variables, which are those that can only take on values from a predefined list,

and may have no ordinal relationship to one another. This restriction is common in the

structure of many real-life systems. For example, a structural design problem may include

the type of material as a variable (e.g. steel, aluminum, etc.), a production system may

use different processing disciplines for a particular machine (first-in-first-out, last-in-first-

out, priority, etc.), or a networking problem may be constructed with decision variables to

indicate if a particular supply point is present (yes, no). These categorical variables can

be represented by integers, but the values usually have no inherent ordering (e.g. 1 = steel,

2 = aluminum, etc. for the types of material). A further complication is that changes to

categorical variable values may change the constraints of the problem and even the number

of continuous variables. The class of optimization problems that includes continuous,

integer-valued, and categorical variables is known as mixed variable programming (MVP)

(Audet and Dennis [5]).

MVP problems with only a few categorical variables that can assume only a small

number of values are usually not difficult to solve. In these problems, categorical settings

can be exhaustively enumerated to produce subproblems which are solved and compared

to determine the optimal setting. However, real-life systems may involve a large number

of discrete variable combinations. Since repeated simulation model evaluations would

be required to solve each of the subproblems at each categorical setting combination, this

approach may be too computationally expensive to use as a solution approach. Because the

5



values of the categorical variables are assigned from an unordered, predefined list, relaxation

techniques used for traditional integer programming problems (such as branch and bound)

are not applicable. Relaxation techniques are able to avoid exhaustive enumeration in

integer programming problems by exploiting the ordinality of the integer-valued variables;

but in MVP problems, the categorical variables must be assigned a value from the list at

every iteration, not just at the solution.

This research considers the optimization of simulation problems with mixed variables,

where the continuous variables are bounded by linear constraints. This class of MVP

problems can be expressed as

min
x∈Ω

f(x) (1.3)

where f : Ω → R ∪ {+∞} is a function of unknown analytical form (referred to as the

objective function) and x ∈ Ω is the vector of mixed design variables. The mixed variable

domain Ω is partitioned into continuous and discrete domains Ωc and Ωd, respectively, where

some or all of the discrete variables may be categorical. Thus, each vector x ∈ Ω can be

denoted as x = (xc, xd) where xc ∈ Rnc are the continuous variables of dimension nc and

xd ∈ Znd are the discrete variables of dimension nd. The domain of the discrete variables

Ωd ⊆ Z
ndcan be represented as a subset of Zn

d

by mapping the predefined list elements

for each categorical variable to integer values. The domain of the continuous variables

Ωc ⊆ Rnc is restricted by linear constraints which can be functions of xd. Since the value

of the constraint bounds may be dependent on the value of the discrete variables, for each

fixed set of discrete variable values xd the associated constraints can be expressed as

Ωc(xd) = {xc ∈ Rnc : ℓ(xd) ≤ A(xd)xc ≤ u(xd)} (1.4)

6



where A(xd) ∈ Rmc×nc , ℓ(xd), u(xd) ∈ (R ∪ {±∞})mc

, ℓ(xd) ≤ u(xd), and mc < ∞. For

convenience, in the remainder of this paper, the explicit dependence of Ωc on xd as shown

in Equation (1.4) is omitted.

Due to this inherent complexity, few methods can efficiently solve MVP problems.

One method that can provide proven convergence to a stationary point for linearly con-

strained and continuously differentiable MVP problems is the Audet-Dennis Mixed Variable

Generalized Pattern Search (MGPS) [5], which is described in Section 2.4.1. This algo-

rithm is implemented in the NOMADm MATLAB
R©

software [1]. NOMADm is unique in

that it not only provides an implementation of MGPS, but it also handles nonlinear con-

straints through a filter approach for infeasible iterates (see Audet and Dennis [8]). Since

NOMADm is only applied in this research to problems with linear constraints, the filter

approach is avoided.

Included in the MGPS algorithm is an optional ������ step at each iteration, in which

the user may attempt any finite strategy to reduce computational cost. As noted by Booker

et al. [10], inexpensive surrogate functions can be used within the ������ step to accelerate

convergence to a solution without affecting the overall convergence theory. If the surrogate

is reasonably accurate, then the search may advance the optimization algorithm to good

solutions with fewer function evaluations than without a ������ step. Since improvement

can be gained through inexpensive surrogates, Sriver [55] used a surrogate-based search in a

computational evaluation of the underlying pattern search ranking and selection algorithm

used in this research. Sriver [55] also suggested that future work include the examination

of surrogate families for stochastic pattern search methods, which this research does in the

context of stochastic MVP problems.
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1.2 Approach

This research focuses on improving the MGPS algorithm for MVP problems used in

NOMADm by:

1. Allowing for the use of "black box" simulation models with stochastic responses, and

2. Generalizing the MGPS algorithm for improved use of surrogates.

Allowing for stochastic simulation responses enables NOMADm to become applicable

to a wider set of problem types. Generalizing the algorithm can reduce the number of func-

tion evaluations required for convergence to a stationary point; therefore, computational

efficiency may be improved.

1.2.1 Use of Stochastic Simulation Models

As part of the MGPS algorithm, the incumbent best solution is only updated when

a trial point provides a better response. When deterministic simulation models are used,

this ensures monotonic system performance improvement, since selection of the incumbent

is accomplished by comparison of deterministic system responses. However, when sto-

chastic simulation models are used, the randomness of system responses complicates the

selection process. To achieve a given statistical level of confidence that the selected iterate

provides true system performance improvement, multiple replications may be required to

obtain enough observations to be confident that the incumbent selected is the true "best"

iterate (see Pichitlamken and Nelson [48]). Since replications require additional function

evaluations, stochastic simulation models are often expensive to optimize. Using the simple

statistical technique of pairwise comparison, the number of function evaluations required to

solve the iterate selection subproblem has been previously considered too computationally

inefficient to implement in the current optimization algorithm (see Trosset [60]). Recent

developments in ranking and selection (R&S) statistical methods offer the ability to use
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multiple comparisons to solve the iterate selection subproblem in a more efficient manner

than pairwise comparison. Sriver demonstrated in [56] that the use of ranking and selec-

tion procedures for the iterate selection subproblem can provide an efficient selection of the

incumbent while maintaining the required level of statistical significance. Thus, an R&S

procedure is used to control the selection of the incumbent.

1.2.2 Generalizing the Algorithm

As noted in the previous subsection, the current MGPS algorithm is able to provide

monotonic improvement by allowing an incumbent to be replaced only by an iterate which

provides a better response. Response improvement alone, however, does not guarantee

convergence to a stationary point for continuously differentiable functions with linear con-

straints. The MGPS algorithm further restricts the candidate iterates to meet polling con-

ditions, described in Section 2.4.1, in order to meet underlying convergence theory. The

MGPS algorithm evaluates points on a mesh and includes an optional ������ step where

"a finite search, free of any other rules imposed by the algorithm, is performed anywhere

on the mesh" (Audet and Dennis [5]), which is described in Section 3.1. The flexibility of

the ������ step allows the user to employ any strategy favorable to the user, as long as it

searches finitely many points (including none). Since the ������ step is optional, the user

can fully personalize the ������ step with the understanding that underlying convergence

theory is provided by the other steps of the algorithm.

Not only does the current MGPS algorithm allow for only one ������ step per it-

eration, but the search is restricted to the discrete plane (i.e., same categorical variable

settings) of the incumbent. This research explores the use of an additional ������ step

that allow the user the flexibility to apply a finite search on the continuous regions associ-

ated with any choice of the discrete variable values. This additional ������ step enables
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a more global search of the feasible region that may result in faster convergence to a sta-

tionary point or an improved solution at the termination of the algorithm. For problems

with a small number of discrete planes, the additional ������ step may coincide with the

current ������ step and thus may not benefit the algorithm significantly. However, for

problems with a large number of categorical setting combinations, the additional ������

step enables the algorithm to update the incumbent with any iterate that provides a bet-

ter response before polling is performed. Therefore, the reduction in function evaluations

may be more significant in problems with a large number of categorical variables.

1.3 Summary

Because of the generality of the targeted class of optimization problems and the rel-

atively weak assumptions, very few methods are provably convergent for MVP problems.

A derivative-free approach, which has been shown to be convergent for MVP problems, is

the mixed variable generalized pattern search (MGPS) algorithm. The purpose of this

research is to develop an algorithm that can be used to efficiently solve simulation-based

optimization problems. The research goal is to improve the efficiency of the MGPS al-

gorithm proposed by Sriver, extend the applicability of NOMADm to stochastic, as well

as deterministic, simulations, and perform testing of appropriate surrogates. Specifically,

the ranking and selection method is used to control the iterate selection subproblem within

NOMADm, which when combined with an additional ������ step and surrogate functions,

increases the applicability and computational efficiency of NOMADm. This approach is

applied to stochastic and deterministic, continuous and mixed variable programming prob-

lems, and performance is compared to that of the native NOMADm performance in terms

of the quality of the terminating solution and computational efficiency.
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1.4 Overview

The next chapter describes pertinent background information found in the literature.

Chapter 3 describes the specific ranking and selection procedure as well as the surrogate

functions used in this research and how they were integrated into NOMADm. Chapter

4 gives comparative results of this implementation against the algorithm currently used

in NOMADm as applied to nonlinear programming problems described in Equation (1.3).

Finally, Chapter 5 gives conclusions and recommendations for areas of further research.
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Chapter 2 - Literature Review

The class of problems that can be represented as a simulation-based MVP structure

is so general that a controlled approach must be used in developing a provably convergent,

computationally efficient optimization algorithm. Before addressing modifications to the

current algorithms, a review of the development and characteristics of the methods used

to solve related problems is required. In this chapter, the general optimization algorithm

is shown to be tailorable to the availability of accurate problem information, with the

frequently used Newton-based methods discussed as an example. Direct search methods

are then discussed with regard to their applicability to this research. Finally, an overview

of ranking and selection procedures and surrogates are discussed.

2.1 Unconstrained Optimization Algorithms

Consider the problem of minimizing an unconstrained continuously differentiable func-

tion f : Rn → R,

min
x

f(x) (2.1)

The selection of an algorithm for solving the problem in Equation (2.1) is usually depen-

dent on the relative importance of computational efficiency and proven convergence to a

stationary point of f .

A basic optimization algorithm for solving the problem in Equation (2.1) is given

in Figure 2.1. By simply requiring that the objective function decreases during each

iteration, the algorithm can produce a sequence of iterates that improves the objective

function value. If derivative information is available, a common practice is the tailoring

of the basic optimization algorithm into a Newton-based method. By placing restrictions

on the search direction pk and step size ak at each iteration, Newton-based methods can,
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General Optimization Algorithm

Initialization: Choose a feasible starting point x0 and suitable stopping criteria.
Set the iteration counter k to 0.

For k = 0, 1, ...

1. If xk is optimal, stop and return xk;

Otherwise, calculate the search direction pk and step size ak at the current iteration.

2. Compute an improved estimate of the solution:

xk+1 = xk + akpk

3. Update k = k + 1 and return to Step 1.

Figure 2.1. General Optimization Algorithm (adapted from Nash and Sofer [43])

under mild conditions, provide computationally efficient, proven convergence to a stationary

point. Since Newton-based methods are so frequently used and provide the main concepts

for proven convergence, the following section discusses the basic optimization algorithm

in terms of a Newton-based algorithm. However, it should be noted that the Newton-

based optimization algorithms are only one example of the general optimization algorithm

in Figure 2.1.

2.2 Newton-based Optimization Algorithms

Under ideal conditions, Newton’s method provides proven convergence to a minimizer

at a quadratic rate, which, roughly speaking, means that the number of correct digits

doubles at each iteration (Nash and Sofer [43]). For Newton’s method, the search direction

pk is calculated as the solution of the Newton Equation

[∇2f(xk)] pk = −∇f(xk) (2.2)
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Unfortunately, the cost of calculating both the gradient ∇f(xk) and Hessian ∇2f(xk)

at each iteration can be computationally expensive, and the Hessian can become ill-conditioned

(Nocedal and Wright [46]). Numerous methods have been developed which attempt to pre-

serve the convergence rate while addressing these issues by replacing the Hessian with an

inexpensive approximation. For quasi-Newton methods, the Hessian is replaced by a pos-

itive definite approximation Bk that is obtained and updated at a lower cost. Usually, the

update methods that are used to calculate Bk also have conditions to prevent the approxi-

mated Hessian from becoming too ill-conditioned (for more details, see Nocedal and Wright

[46]). For the steepest descent method, the Hessian is replaced by the identity matrix so

that pk = −∇f(xk). Although the steepest descent method is able to yield computational

savings in the calculation of the search direction, convergence may become arbitrarily slow

(Nash and Sofer [43]).

2.2.1 Guaranteeing Convergence

Although the general algorithm in Figure 2.1 includes those that converge to a station-

ary point, an unmodified algorithm may not make sufficient progress towards the point and,

in some cases, may actually diverge. In an effort to enforce improvement in the solution

estimate at each iteration, the step size ak is computed in the direction pk so that simple

decrease, f(xk+1) < f(xk), in the objective is achieved. That is, since xk+1 = xk + akpk,

the simple decrease condition can be written as

f(xk + akpk) < f(xk) (2.3)

Under mild assumptions, requiring improvement at each iteration will keep the algorithm

from diverging, but does not ensure convergence to a stationary point. Dennis and Schnabel

[19, p. 117] provide the following example to illustrate that an algorithm relying solely on
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a simple decrease condition may not converge to a stationary point of the objective. The

function f(x) = x2 has only one stationary point at x = 0. If the step sizes are chosen too

small ak = 2−k+1, then the sequence of iterates is given by xk = 1 + 2−k, which converges

to 1. If the step sizes are chosen too large ak = 2+ 3(2−(k+1)), then the sequence is given

by xk = (−1)k(1 + 2−k), with limit points at ±1. The choice of search direction can also

affect the convergence of the algorithm. If the search direction pk is almost orthogonal to

the direction of steepest descent, the algorithm can also stall (Kolda et al. [31]) at a non-

stationary point. Therefore, additional conditions must be met for optimization algorithms

to prove convergence for unconstrained optimization problems.

Optimization algorithms generally use either an embedded trust region or a line search

methodology to meet conditions that prove convergence to a stationary point of the objec-

tive. Since this review is used to support the convergence theory presented later in the

document, only the line search conditions are presented. For line search methods, con-

ditions are imposed on both the search directions and the step sizes in order to satisfy

convergence conditions. The first condition required of a search direction is that the can-

didate direction must be a descent direction. A sufficient condition for pk to be a descent

direction is that pTk ∇f(xk) < 0. This condition ensures that the simple decrease condi-

tion in Equation (2.3) will be satisfied for sufficiently small ak. The only other condition

imposed on the search directions is the sufficient descent condition (Nash and Sofer [43, p.

314]), given by

−pTk ∇f(xk)

‖pk‖ ‖∇f(xk)‖
≥ ε > 0, k = 0, 1, ... (2.4)

for some ε > 0. This keeps the search direction pk from approaching orthogonality to

−∇f(xk) in the limit by bounding the angle between the two. This is more intuitively
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seen if the sufficient descent condition is rewritten as cos θ ≥ ε > 0, where θ is the angle

between pk and −∇f(xk), often referred to as the angle condition (Nash and Sofer [43, p.

314]).

Given these two conditions on pk, step sizes must also be controlled to ensure conver-

gence to a stationary point. The sufficient decrease condition, given by

f(xk + akpk) ≤ f(xk) + µakp
T
k∇f(xk) (2.5)

where µ ∈ (0, 1), ensures that the step size ak produces a decrease that is at least as good

as a fraction of what the linear approximation to f(xk + akpk) would produce. Since the

linear approximation of f(xk + apk) is given by

f(xk + apk) ≈ f(xk) + apTk∇f(xk) (2.6)

and the descent direction necessarily satisfies pTk∇f(xk) < 0, the use of the sufficient de-

crease condition eliminates the possible selection of step sizes ak that are too long. In

order to avoid step sizes that are too short, a curvature condition must be satisfied. One

such condition, is given by

∇f(xk + akpk)
Tpk ≥ η∇f(xk)

Tpk (2.7)

where η is a scalar and 0 < µ < η < 1. This ensures that the slope at a step size ak is at

least η times the slope at the current point. The curvature condition eliminates potential

choices of the step size which would produce slopes that are arbitrarily close to the gradient

at the current point, thereby ensuring the step size ak is not too short. Equation (2.5)
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Backtracking Line Search

Initialization: Choose a > 0, µ ∈ (0, 1), and 0 < ρl < ρu < 1.

1. If f(xk + apk) ≤ f(xk) + µa∇f(xk)T pk, stop and return ak = a.

2. Compute a = ρa where ρ ∈ (ρl, ρu).

Figure 2.2. Backtracking Line Search (adapted from Dennis and Schnabel [19])

and (2.7) together are called the Wolfe conditions. Alternative conditions are discussed in

Nocedal and Wright [46].

A simple and convenient line search strategy is called backtracking , which is detailed

in Figure 2.2. In backtracking, the step size is contracted iteratively until the sufficient

decrease condition is satisfied. Since pk is a descent direction, backtracking terminates in

a finite number of steps. Backtracking also enforces the curvature condition automatically

(for more details, see Nocedal and Wright [46]).

2.2.2 Suitability of Derivative-based Methods

Although under ideal conditions methods that use derivative information (i.e. Newton-

based methods) can provide quadratic rates of convergence, the assumption that first deriv-

ative information is available (or can be accurately calculated) is not satisfied for all cases of

unconstrained optimization problems. In particular, when complex simulations are used to

provide function evaluations, it may be difficult or impossible to calculate, or even estimate,

the derivatives. For example, explicit derivative formulas may not exist for deterministic

simulations that use numerical computation of differential equations to determine function

evaluations. Additionally, approximation methods used on stochastic simulations, such as

finite-differencing or simultaneous perturbation stochastic approximation (Spall [54]), may

fail when function values are either only accurate to a few digits or computationally pro-

hibitive in higher dimensions. Therefore, methods which rely on the availability of deriv-
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ative information (and clearly those which depend on exact or approximate second-order

derivative information, such as quasi-Newton and Levenberg-Marquardt methods) may not

be rigorously applicable when developing an algorithm to solve simulation optimization

problems.

2.3 Search Heuristics

Direct search methods use direct comparison of functional responses to progress to a

point that provides an improved response. Because they do not use derivative informa-

tion, direct search methods make fewer assumptions of the response generator (simulation

model). Since direct search methods only require function responses, they are generally

more broadly applicable than Newton-based methods. However, in exchange for general-

ity, direct search methods may require a large number of function evaluations in order to

converge to a solution, assuming that they converge at all.

As a member of the direct search methods class, search heuristics seek an acceptable

improvement rather than a provably optimal solution by methodically searching the feasible

region. Because of their simplicity and ability to discover good solutions rapidly (even

in high dimensional settings), search heuristics have become popular in solving complex

problems in a variety of different disciplines. As representatives of search heuristics, both

simulated annealing and evolutionary algorithms are described in general and as they relate

to this research. Each is an adaptation of a multidisciplinary technique originating from

an engineering discipline.

2.3.1 Simulated Annealing

For simulated annealing, thermodynamic equilibrium theory is applied to the selection

of iterates which do not satisfy the simple decrease condition of Equation (2.3). As shown

in Figure 2.3, incumbent replacement is based on the objective function evaluation of the
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incumbent and trial points. Trial points that provide simple decrease always replace the

incumbent; however, trial points that fail to satisfy this condition may also replace the

incumbent according to a probability distribution that is maintained by the algorithm.

The probabilistic selection offered by simulated annealing theoretically allows the search

algorithm to escape areas of local optima and actively search for a global optimum.

Annealing is the process of heating and slowly cooling an object (typically glass or

metal) according to a schedule in order to strengthen or harden the resulting product. For

optimization of systems, the object of interest is represented by the solution where strength

is measured as proximity to optimality. For complex optimization problems, such as steel

production or crystal formation, the cooling schedule directly affects the quality and cost of

the resulting product. For example, in the formation of crystal from a liquid, the cooling

schedule controls the resulting arrangement of atoms in the resulting solid crystal. If

the transition of physical states occurs too rapidly, the atoms will be unable to adequately

explore local rearrangements resulting in the atoms being trapped in the configuration they

had in the liquid state. Thus, the slower the cooling schedule, the more likely that the

atoms will find the ordering that has the lowest global energy. On the other hand, if the

system is cooled too slowly, the cost to maintain the temperature offsets the relative value

of the resulting crystal.

The concept of annealing was applied to numerical methods to minimize the resulting

energy of a system by including thermodynamic fluctuations in statistical mechanical sys-

tems. Metropolis et al. [41] proposed the use of a state probability distribution to simulate

a system at a fixed temperature. The Boltzmann-Gibbs energy state probability distribu-

tion provides the relative probability of seeing a system in a state with an energy E as:
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General Simulated Annealing Algorithm

Initialization: Choose a feasible starting point x0 and Tmin.
Initialize the cooling schedule used to generate the temperature T.
Set x = x0.

1. If T > Tmin, stop and return x.

2. Randomly select a neighbor point y.

3. If (E[y] < E[x]), set x = y;

Otherwise, set x = y with probability exp(−E[y]−E[x]
T ).

4. Generate T according to the cooling schedule and return to Step 1.

Figure 2.3. General Simulated Annealing Algorithm

P (E) = cT exp(− E

cbT
) (2.8)

where cT > 0 is the normalizing constant, cb > 0 is the Boltzmann constant, and T is the

temperature of the system.

The resulting search algorithm is presented in Figure 2.3, for a fixed temperature T ,

where system states are represented as points. The use of the Boltzmann-Gibbs distribution

in the iterate selection subproblem provides a basis for the probabilistic acceptance of points

which do not satisfy the simple decrease condition. After a large number of iterations, the

system eventually reaches an equilibrium state governed by the Boltzmann-Gibbs energy

distribution (Spall [54, p. 210]).

Formally introduced as an optimization method by Kirkpatrick et al. in [30], simulated

annealing was developed as a method to find a good routing of wires on a circuit board.

By varying the temperature T according to a user-defined cooling schedule, the Metropolis

algorithm was extended to a general optimization technique. When the temperature is

high, the algorithm is similar to a random walk and thus can globally explore the feasible
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region. However, as the algorithm progresses, the temperature reduction restricts the

acceptance iterates that do not strictly improve the quality of solution. Therefore, when

the algorithm is applied to functions with many local optima, this modified Monte Carlo

search technique has the ability to probabilistically find the global optimum.

Two key elements in the implementation of simulated annealing are the selection of

candidate iterates and the cooling schedule. Selection of candidates iterate can be done

randomly as shown in Figure 2.3; however, simulated annealing can perform more efficiently

if the candidate iterate selection is based on an algorithm using available problem informa-

tion. In such an implementation, the Boltzmann-Gibbs distribution would be used to allow

the algorithm to make alternative selections for the best iterate. The selection of the cool-

ing schedule represents a more complex issue. As discussed in the formation of crystals, if

the cooling rate is too high, the system will not be able to fully explore the feasible region

and may not find the global optimum. If the cooling rate is too low, the computational

efficiency of the algorithm may be reduced. The selection of an appropriate cooling sched-

ule and search algorithm are essential to the convergence of simulated annealing to a global

optimum; however, in practice, these completely problem-dependent tuning parameters are

not known. Therefore, simulated annealing requires problem information that is usually

not available from a "black box" simulation to ensure convergence to a stationary point.

2.3.2 Evolutionary Algorithms

Evolutionary algorithms comprise a large set of numerical methods that uses adaptive

(or evolutionary) processes to seek out optimal solutions. One main distinction of evolu-

tionary algorithms is that they maintain a population of current "best" iterates rather than

a single one, thus enabling them to explore many points in parallel instead of the common

serial approach.
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2.3.2.1 Genetic Algorithms. Perhaps the most popular of the evolutionary

algorithms class are genetic algorithms (GA). Originally developed by Holland [26] to

represent complex adaptive processes, ranging from biological systems to economies to

political systems, genetic algorithms were based on principles of genetic variations and

natural selection to mimic the evolution of a population over generations. The use of

generations allows the whole population of genetic algorithms to be updated together; thus,

the state of a GA is represented by all the individuals of the current population.

Using biological theories of competing traits, genetic algorithms can directly maintain

control between trait dominance and randomness in the population genes (which from an

optimization context is analogous to the search for local versus global optima). Because

genetic algorithms are easily adapted to optimization problems and are able to rapidly

locate good solutions, genetic algorithms have been accepted as an optimization tool.

Since genetic algorithms have a basis in natural selection, the terminology uses many

biological names. For example, each iterate is referred to as an individual whose para-

meter values are called chromosomes. Although the chromosomes have traditionally been

represented as binary strings, requiring standard bit (binary digit) coding, extensions of

genetic algorithms to multiple character coding is an area of active research (Spall [54, p.

237]). The chromosomes of an individual are used to compute its fitness value, which is

analogous to the objective function value of an iterate. The resulting fitness value can

then be used to determine both an individual’s inclusion in subsequent generations and

matchings for offspring production (representing the "survival of the fittest" principle of

natural selection). One distinction that GA makes from natural selection theory is the

inclusion of an "elitism" strategy. De Jong, a doctoral student of Holland’s who systemat-

ically studied the tuning of the genetic algorithm parameters, first described an "elitism"
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strategy, which allows for asexual reproduction of individuals based on fitness values [18].

The "elite" individuals can be directly appended to the next generation and given priority

during crossover matchings, thus ensuring the best chromosomes are preserved.

Genetic operators of crossover and mutation are then applied probabilistically to the

current population to produce a new generation of individuals. During the crossover (or

recombination) operation, the chromosomes of the individuals to be reproduced, referred

to as the parents, are used in a recombination process to determine the chromosomes of

the offspring. The usefulness of the recombination process depends on the nature of the

fitness function. If the chromosomes operate independently of one another in the fitness

evaluation, then crossover can quickly improve the offspring’s fitness value. However, if

the chromosomes are all intimately linked, the algorithm can skip the crossover operation

and rely on mutation to seek fitness improvement. The mutation operation of genetic

algorithms actively searches for improvements using the current population. In the basic

formulation, the mutation operation randomly changes the chromosomes; however, just as

with simulated annealing, genetic algorithms can perform more efficiently if the mutation is

based on an algorithm using available problem information. The resulting general genetic

algorithm is given in Figure 2.4.

Although there are several classes of evolutionary algorithms, genetic algorithms have

been the most widely used. As an example of other evolutionary algorithms, evolution

strategies are reviewed in the next subsection.

2.3.2.2 Evolution Strategies. Evolution strategies are specifically designed

for constrained continuous variable optimization. Instead of extending genetic algorithms

by changing the discrete chromosomal coding, evolutionary strategies were developed in-

dependently by Rechenberg [50] to use the natural (continuous) values of the individual’s
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General Genetic Algorithm

Initialization: Choose an initial population of N random individuals.
Evaluate the fitness function for each individual.
Set Ne = 0 if elitism strategy is used, otherwise select 0 < Ne < N.

1. Select with replacement N −Ne parents from the full population (including the Ne elite
individuals). The selection of parents should employ a strategy to ensure individuals with
higher fitness value are selected more often.

2. (Crossover) Apply a recombination process to the chromosomes of the parents to
produce offspring.

3. While retaining the Ne elite individuals, replace the previous generation with the
offspring generated in step 2.

4. (Mutation) Apply an appropriate algorithm to change the chromosomes of the population.

5. Compute the fitness values for the new population. Terminate the algorithm is the
stopping criterion is met or if the budget of fitness function evaluations is reached;
otherwise, return to step 1.

Figure 2.4. General Genetic Algorithm (adapted from Spall [54])

parameters. In Rechenberg’s original work, the population was limited to a size of one but

was extended with the introduction of crossover to populations with more than one indi-

vidual. Other differences between genetic algorithms and evolution strategies are related

to the basic genetic operations used to generate offspring and population sets. Before indi-

viduals are selected for inclusion in the current population, offspring are generated by mu-

tating the parent chromosomes according to a zero mean probability distribution (usually a

normal distribution) with a variance that is either user-defined or based on the covariance

of the parent chromosomes. Offspring that do not meet the constraints of the problem are

simply discarded. The resulting valid offspring compete either with or without the par-

ents for inclusion in the next generation. The resulting evolutionary strategy algorithm is

given in Figure 2.5.
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General Evolution Strategy Algorithm

Initialization: Choose an initial population of N random individuals.
Evaluate the fitness function for each individual.

1. (Mutation and Crossover) Apply an appropriate distribution to generate λ offspring from
the current population that satisfy the constraints of the problem.

2. Evaluate the fitness function for each offspring generated in step 1.

3. If parents are to be included in selection, select the N best individuals from the
combined population of the λ offspring and the N parent; otherwise, select the N best
individuals from the population of λ > N offspring only.

4. Replace the previous generation with the N individuals selected in step 3.

5. Terminate the algorithm if the stopping criterion is met or if the budget of fitness
function evaluations is reached; otherwise, return to step 1.

Figure 2.5. General Evolution Strategies Algorithm (adapted from Spall [54])

Just as with simulated annealing, the selection of appropriate algorithmic parameters

and search algorithm is essential to the convergence of evolutionary algorithms to a global

optimum. Although evolutionary algorithms, particularly genetic algorithms, have shown

success in many diverse types of applications, they may perform significantly poorer than

even random searches. The general lack of understanding in the performance of evolution-

ary algorithms has motivated a large portion of the current research to characterize what

it is that makes certain problems hard for these algorithms.

2.3.3 Suitability of Search Heuristics

Through use of embedded stochastic processes, many of the search heuristics can

avoid local optima. The balance between generality and performance properties for search

heuristic methods provides a good example of the no free lunch (NFL) theorem. According

to the NFL theorem by Wolpert and Macready [63], if an algorithm does particularly

well on average over one class of problems then it must do worse on average over the
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remaining problems. Thus, when a comparison of performance is conducted on a class of

problems between a general search heuristic and a tailored algorithm, the tailored algorithm

frequently outperforms the search heuristic. In the case of search heuristics, their ability

to perform generally well over a diverse set of problems infers that they may not perform

well on individual problem classes.

When considering the development of an algorithm to solve simulation optimization

problems, the underlying algorithm needs to be general enough to be applicable to a variety

of simulations yet narrow enough in scope to avoid issues the NFL theorem presents. Ad-

ditionally, the underlying algorithm’s convergence theory should be robust enough to avoid

overtailoring the algorithm, since simulations are often "black box" systems. Because the

convergence theory and algorithmic performance are generally unreliable, search heuristics

are not used in this research.

2.4 Generalized Pattern Search (GPS) Methods

As shown in Section 2.1, the use of the general optimization algorithm in Figure 2.1

does not ensure convergence to a stationary point of the optimization problem given in

Equation (2.1). Pattern search methods, a subclass of direct search methods, have been

proven convergent to a stationary point by the use of a conceptual mesh. Additionally,

pattern search methods have been modified for applicability to MVP problems. In this

section, the mesh conditions placed on the pattern search methods and adaptations of GPS

methods are discussed in relation to the underlying convergence theory.

2.4.1 Pattern Search Methods

Before 1997, the direct search methods were generally viewed as search heuristics

because they lacked convergence theory. Torczon [58] made a significant contribution by

not only demonstrating that many of the seemingly diverse direct search methods members
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could be unified under a generalized subclass, designated as pattern search methods, but

under reasonable assumptions, this new subclass of methods was proven convergent to a

stationary point. Specifically, if the objective function f is continuously differentiable in a

neighborhood of the level set,

L(x0) = {x : f(x) ≤ f(x0)} (2.9)

then a subsequence of GPS iterates {xk} will globally converge to a point x̂, satisfying

∇f(x̂) = 0; that is, lim infk−→∞ ‖∇f(xk)‖ = 0. Thus, without using any derivative

information, pattern search is globally convergent to a stationary point. In order to unify

the members of the pattern search subclass, Torczon [58] imposed requirements on both the

location of candidate iterates and the update operation used in the direct search methods.

The candidate iterates eligible to replace the current incumbent are required to lie on a

conceptual lattice (or mesh), which is determined by the direction set and a step length

parameter maintained by the algorithm.

Once the set of candidate points is established, each point is evaluated by the objective

function and compared against the incumbent . If improvement is found, then the successful

candidate iterate is accepted as the new incumbent and step size is either maintained or

increased (which retains or coarsens the mesh, respectively); otherwise, the step size is

decreased (which refines the mesh) and the members of the new candidate iterate set are

evaluated for success. It is important to note that the use of the mesh makes satisfaction

of a sufficient decrease condition, Equation (2.3), automatic, thus only simple decrease is

required (Kolda et al. [31]). By inspection, the conditions of convergence for the pattern

search methods are analogous to the conditions required in Section 2.1. In particular,

the use of a positive spanning set (described in Section 3.1) satisfies the angle condition
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and the updating operation of the step size ensures that the steps are neither too long nor

too short, which was previously ensured by the use of sufficient decrease and either the

curvature condition or backtracking.

Lewis and Torczon [34] further generalized the algorithm applying the theory of posi-

tive linear dependence presented by Davis [17]. The direction set is selected in the gener-

alized algorithm so that it forms a positive spanning set for the domain of the optimization

function. A set of vectors {a1, ..., ap} positively spans Rn if any vector x ∈ Rn can be

written as a nonnegative linear combination of the vectors in the set; i.e.,

x = λ1a1 + ···+ λpap (2.10)

where λi ≥ 0 for ∀i = 1, ..., p. Through this construction of the candidate iterate set,

whenever ∇f(x) �= 0, where x is the current incumbent, a descent direction of the objective

function can be captured in at least one member of the candidate iterate set. The set

{a1, ..., ap} is called positively dependent if one of the ai’s is a nonnegative combination of

the others; otherwise, the set is positively independent. Since a positive basis is a positively

independent set whose positive span is Rn, a positive basis is the smallest proper subset

of a positive spanning set that still positively spans Rn. Davis showed that any positive

basis in Rn contains between n+1 and 2n elements (referred to as a minimal and maximal

set, respectively); therefore, Lewis and Torczon bound the worst case number of members

in the candidate set per iteration to n+1 iterates. As noted in Dolan et al. [21], "the key

to the global analysis is the notion of having searched in a sufficient number of directions

from the current iterate to guarantee that we have not overlooked a potential direction of

descent." Thus, the use of a positive basis enables the algorithm to use the fewest number

of function evaluations without the accidental avoidance of descent directions.
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Pattern search methods unified many of the most popular direct search methods,

including the coordinate search with fixed step lengths, the original Hooke-Jeeves method

[28], EVOP with factorial designs (Box [11]), and multidirectional search (Dennis and

Torczon [20]). However, it should be noted that one of the first and most popular methods,

the original Nelder-Mead (downhill simplex) method [44], does not fall into the class of

pattern search methods. The original Nelder-Mead method is based on the use of a

simplex, which is a geometrical figure that has one more vertex than dimension, to capture

first-order information. The method uses a line search along the line passing through the

centroid and the vertex that has the currently least favorable objective value. The line

search attempts to locate a new point for the vertex that produces an objective function

value that is strictly better than that of the second least favorable vertex. If such a point is

found, the vertex is moved to the new point (thus, deforming the shape of the simplex) and

the method repeats with the new least favorable vertex. If the line search is unsuccessful

in locating a new point, all the vertices are contracted toward the vertex with the most

favorable objective function value. The result of this relatively simplistic method is a

simplex that is able to quickly adapt to the local topology of the function. However, as

detailed by Kolda et al. [31], the unmodified version of this method cannot be considered a

GPS method because the selection of the candidate set does not ensure an existing descent

direction is located and the update operation is based on comparisons to the second least

favorable vertex instead of the current incumbent value.

2.4.2 Extensions to Constrained Problems

Lewis and Torczon ([35] and [36]) showed that placing an additional requirement on the

candidate iterate set enables the convergence theory established in the unconstrained GPS

algorithm to be extended to bound and linearly constrained optimization with continuously
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differentiable objective functions. Specifically, a subsequence of GPS iterates converges to

a point x̂ satisfying the first-order necessary condition for optimality; namely,

∇f(x̂)T (x−x̂) ≥ 0 for all feasible x. The additional requirement is that the set of directions

that defines the candidate iterate set must be chosen to conform to the geometric boundary

of the active constraints. In an effort to keep all the iterates of the GPS methods feasible

(thereby producing feasible point methods) Lewis and Torczon required that the initial

iterate be a feasible point and used an exact penalization approach; namely,

minF (x) (2.11)

where F (x) =

{
f(x), if x ∈ Ω
+∞, otherwise

and Ω = {x ∈ Rn | l ≤ x ≤ u} or Ω = {x ∈ Rn | l ≤ Ax ≤ u} for bound and linearly

constrained optimization problems, respectively.

Audet and Dennis [6] presented the unification of the unconstrained, bound, and lin-

early constrained versions of GPS methods by applying a barrier function directly to the

function instead of Lewis and Torczon’s approach of making the use of an exact penaliza-

tion approach dependent on the selection of GPS algorithm. The barrier approach simply

replaces the optimization function of the original problem with fΩ(x), which is given by

fΩ(x) =

{
f(x), if x ∈ Ω
+∞, otherwise

(2.12)

where Ω is the feasible region. By considering all the previous GPS algorithms as the

same algorithm with the barrier function used as the optimization function, the analysis

and theoretical results are applicable to all the previous methods. Similar to the previous

work, the step size (mesh size) parameter is updated conditionally on the replacement of
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the incumbent and the candidate iterates are required to lie on the mesh Mk, which is given

by

Mk = {xk +∆kDz : z ∈ Z|D|+ } (2.13)

where xk ∈ Rnc is the current iterate, D ∈ Rnc×|D| is a positive spanning set, and ∆k ∈ R

is the mesh size parameter. Only the following additional rule needs to be enforced to

assure convergence to a stationary point: each direction dj ∈ D, for j = 1, ..., |D|, must be

of the form d = Gz, where z ∈ Zncand G ∈ Znc×nc is a nonsingular generating matrix.

In order to allow the user the flexibility to incorporate search heuristics (see Booker et

al. [9] and [10]), Audet and Dennis ([6]) explicitly separate out a ������ step to comple-

ment the ��		 step, which is different but equivalent to the work of Torczon ([58]). During

the ��		 step, the members of the poll set (candidate set) are evaluated and compared to

the incumbent for improvement. The poll set Pk is composed of mesh points neighboring

the current incumbent xk in the directions of the columns of Dk ⊆ D; thus the poll set can

be expressed as

Pk = {xk +∆kd : d ∈ Dk} (2.14)

where Dk is the current positive spanning set. Thus, there is great freedom in choosing

the directions of the positive spanning set.

Since the convergence results do not depend on the ������ step, the user is provided

this optional step to employ a finite heuristic to accelerate the convergence of the algorithm.

If either the ������ or ��		 step produces an improved mesh point, then the current

iteration can end, the mesh size parameter is kept the same or is increased, the improved

mesh point becomes the new incumbent, and the process is reiterated. However, if both the
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General Pattern Search Algorithm

Initialization: Choose a feasible starting point x0 such that fΩ(x0) <∞.
Let D be a positive spanning set.
Let the M0 ⊂ Ω be the mesh defined by mesh size parameter ∆0 > 0 and D0 ∈ D
Set the iteration counter k to 0.

For k = 0, 1, ...

1. ������ Step (Optional): Employ some finite strategy seeking an improved mesh point;
i.e., xk+1 ∈Mk such that fΩ(xk+1) < fΩ(xk).

2. ��		 Step: If the ������ step does not find an improved mesh point, evaluate fΩ at
the points in ��		 set Pk until an improved mesh point xk+1 is found (or until done).

3. Update: If ������ or ��		 finds an improved mesh point , then update xk+1, and set
∆k+1 = τmk∆k ≥ ∆k where τ > 1 is a rational number that remains constant over all
iterations, and the integer mk satisfies 0 ≤ mk ≤mmax for some fixed integer mmax ≥ 0;

Otherwise, set xk+1 = xk, and set ∆k+1 = τmk∆k < ∆k where τ is a rational number that
remains constant over all iterations, τmk ∈ (0, 1), and the integer mk satisfies mmin ≤ mk ≤ −1
for some fixed integer mmin.

4. Terminate the algorithm if the stopping criterion is met or if the budget of function
evaluations is reached; otherwise, return to step 1.

Figure 2.6. General Pattern Search Algorithm (adapted from Audet and Dennis [6])

������ or ��		 step fail to produce an improvement, then the incumbent is declared to be

a mesh local optimizer, the mesh size parameter is decreased, and the process is reiterated.

Although not directly covered in this research, pattern search methods have also been

extended to problems with nonlinear constraints. Lewis and Torczon [37] apply GPS for

bound constraints to an augmented Lagrangian (see Conn et al. [13]) formulated from the

constraints of the problem. By iteratively reducing the terminating mesh size parame-

ter and using the results of one iteration to provide parameter estimates for the next, the

algorithm converges to a stationary point under the assumption of twice continuous dif-

ferentiability of the objective and constraint functions. The drawback in practice is that

performance is driven by a problem-dependent penalty parameter.
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Audet and Dennis [8] alternatively extend GPS for nonlinear constraints by incor-

porating a filter. The filter algorithm was first introduced by Fletcher and Leyffer [23]

as a method to globalize sequential quadratic programming (SQP) and sequential linear

programming (SLP) without requiring the user to specify the weight parameters used in

an alternative merit function approach. A filter algorithm introduces a constraint viola-

tion function that aggregates constraint violations for sampled infeasible points and uses

a bi-objective approach to the optimization problem, in which the filter accepts an iterate

that improves either the objective function or the aggregate constraint violation function.

While convergence to a point satisfying first order optimality conditions is not proven by

the use of the resulting algorithm (since the convergence results that are guaranteed de-

pend strongly on the set of directions used in the ��		 step), it is demonstrated that as

a richer set of directions are used, the likelihood of achieving a point satisfying first-order

optimality conditions increases. The pattern search filter algorithm reduces to the basic

GPS algorithm when nonlinear constraints are absent. It does not use derivative infor-

mation, requires only simple decrease in function value for a mesh parameter update, and

does not require any constraint qualifications on the nonlinear constraints.

In [7], Audet and Dennis introduce the Mesh Adaptive Direct Search (MADS) algo-

rithm to handle general constraints. MADS has a similar structure to GPS; however,

MADS introduces a poll size parameter ∆p
k that is used in conjunction with the mesh size

parameter ∆m
k , the current incumbent xk, and a positive spanning matrix Dk to construct

a frame (the former ��		 set, renamed to align with the Coope and Price nomenclature in

[14]) used during the ��		 step. Although both the poll size and mesh size parameters are

used to construct the frame, it is important to note the poll size parameter does not directly

influence the mesh. This distinction allows the algorithm to choose from a richer pool of
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candidate sets for the direction by keeping ∆p
k ≥ ∆m

k . Thus, by letting ∆m
k go to zero more

rapidly than ∆p
k, the directions in Dk used to define the frame may then be selected from

a larger set of directions that become dense in the limit. When combined with the barrier

method of assigning a function value of infinity to infeasible iterates, MADS has stronger

convergence properties than the original GPS algorithm, even with nonlinear constraints.

2.4.3 General Pattern Search Extensions

Materiel to this research was the development of a framework for MVP problems with

linear constraints by Audet and Dennis [5]. Having already defined a local ��		 in the

GPS algorithm, the Mixed Variable Generalized Pattern Search (MGPS) accommodates

categorical variables by dividing polling into three stages. The local ��		 of the GPS

algorithm for continuous variables is augmented with polling of the current set of discrete

neighbors and extended polling to explore around promising neighbors, which is discussed

in Chapter 3. Abramson [2] extended MGPS to general nonlinear constraints by using

a filter. This is pertinent to this research because it is incorporated into the NOMADm

MATLAB
R©

software [1].

It is also important to mention the significant contributions made in the application-

related research for GPS algorithms. Although the proximity of linear constraints requiring

the direction set Dk to conform to the geometry of the boundary is presented by Lewis

and Torczon [36], the algorithm presented for constructing the required directions did not

directly address the case of linearly dependent active constraints. Brezhneva and Dennis

[12] provide a general algorithm that first identifies nonredundant active constraints via

a projection approach and the solution of a linear program and then constructs sets Dk

taking into account only nonredundant constraints.
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To further characterize the quality of solutions that can be attained by GPS methods,

Abramson [3] is able to prove under mild conditions some limited second-order behavior

results. Even without first-order derivatives, under mild assumptions, Abramson proves

that GPS cannot converge to a strict local maximizer, and with the additional assumption

that the objective function f is sufficiently smooth, that the use of a 2n orthonormal

positive basis prevents convergence to a saddle point where the sum of the eigenvalues of

the Hessian are negative.

Since computational efficiency can be a driving factor in the selection of an optimiza-

tion algorithm (particularly for direct search methods), methods for increasing efficiency

by using available information are usually an actively investigated research topic for any

computational field. Abramson et al. [4] demonstrate that the use of any derivative in-

formation can significantly reduce the overall number of function evaluations required of

a GPS algorithm while maintaining the known convergence properties. The method uses

any available gradient information to prune or remove directions of known ascent from the

positive spanning set Dk, thus producing a pruned set DP
k . The pruned set DP

k is then

substituted for the original positive spanning set in the standard ��		 step of the GPS al-

gorithm. As a result, even rather rough approximations to the gradient (on the mesh) are

shown sufficient to reduce the poll set to a singleton, thus requiring only a single function

evaluation at each ��		 step.

Computational efficiency has also been shown to be improved by using gradient in-

formation calculated from a simplex of previously stored iterate responses (Custódio and

Vicente [16]). In its most basic form, the simplex gradient can be used to control poll

ordering in an effort to reduce the number of function evaluations within a ��		 step be-

fore an improved mesh point is located. If the simplex gradient is used to approximate
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the true gradient, pruning can again lead to a singleton in the poll set. Furthermore, the

simplex Hessian can be constructed and used to generate an approximation to the New-

ton direction. Simplex derivative information can also be used to form a candidate set to

be evaluated during the ������ step or to impose a sufficient decrease condition on the

update of the mesh size parameter. Thus, without requiring additional function evalua-

tions, the use of simplex derivatives can be used successfully to increase the computational

efficiency of the GPS algorithm.

Kolda et al. [31] introduced the class of generating search set (GSS) methods that

contains not only pattern search, but also moving grids (algorithms inspired by Coope and

Price [14] that conditionally enable the mesh to change between iterations), and methods

that directly enforce the sufficient decrease condition of Equation (2.5) without derivative

information, such as those found in [39] by Lucidi and Sciandrone, instead of using the

simple decrease of Equation (2.3) with mesh size controls. In order to prove convergence,

the GSS methods are unified under three principles (which are the same requirements of

the derivative-based methods discussed in Section 2.2):

1. the algorithm must have a search direction that is a descent direction, i.e. a search
direction pk where pTk ∇f(xk) < 0

2. GSS methods must avoid poor search directions, i.e. search directions must satisfy the
sufficient descent condition of Equation (2.4)

3. GSS methods must avoid poor choices of step lengths; i.e. the steps taken must not be
too long or too short

Principles 1 and 2 are necessarily satisfied for all members of the GSS class because the

use of generating sets that positively span the domain of the objective function ensure that

at least one direction is a descent direction that is not orthogonal to the gradient. Since

each of the GSS methods decreases the mesh size parameter after unsuccessful iterations,

this is equivalent to a multidirectional line search with backtracking which will ensure the
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steps are not too short. As a result, the only requirement for a GSS method to converge

to a stationary point is to have a means to avoid choices of step lengths that are too long.

In order to allow for the inclusion of various algorithms within the GSS class, the condition

for appropriate step lengths is generalized as

f(xk +∆kpk) ≤ f(xk)− ρ(∆k) (2.15)

where the forcing function ρ is used to change the inequality between the simple decrease

condition and the sufficient decrease condition. For algorithms that use the mesh update to

limit the maximum length of the step size, such as GPS and moving grids, only the simple

decrease condition needs to be fulfilled. For these algorithms, the forcing function is simply

set to zero to produce the simple decrease condition of Equation (2.3). For algorithms that

do not restrict the maximum step size length, the sufficient decrease condition is created

by requiring ρ to be a continuous, monotonically increasing function that is linear as ∆k

decreases to zero. Kolda et al. [31] demonstrate that every member of the GSS class is

able to satisfy the conditions, thereby proving convergence for GSS methods.

2.4.4 Suitability of Generalized Pattern Search (GPS) Methods

Generalized Pattern Search methods are well-suited for use in the development of

an algorithm to solve simulation optimization problems. Since they are a subclass of

direct search methods that do not use derivative information, GPS methods are directly

applicable to problems where derivative information is unavailable and cannot be accurately

calculated. Additionally, GPS methods have been proved convergent not only as a class

itself, but also as a member of the superclass of GSS methods. The flexibility of GPS

methods has been demonstrated by tailoring to allow for the handling of different types of

constraints and variables (to include MVP problems).
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Although all members of the GSS class are proven to be convergent to a stationary

point, the generality of the problem structure and level of development are important factors

in the selection of the underlying optimization algorithm. For example, the moving grid

algorithm presented by Coope and Price allows greater flexibility of the mesh and could

be extended to handle categorical variables, but their algorithm has not been encoded

for general use. Since NOMADm is an algorithm that can handle MVP problems, the

underlying MGPS algorithm of NOMADm will be modified in this research to develop an

algorithm that can efficiently solve simulation-based optimization problems of "black box"

systems.

2.5 Implementation Considerations

With the underlying algorithm selected, the adaptation of the current algorithm to

stochastic simulations and computational efficiency improvements may be discussed. In

this section, the use of ranking and selection procedures and surrogate searches will be

discussed as they relate to efficiently solving simulation-based optimization problems. It

will be shown that the key concept in both modifications is to gather as much additional

problem information as possible without requiring a large number of additional function

evaluations.

By considering the stochastic simulation as a response generator, a typical approach

in reducing the sampling error of the expected performance is to replicate the design vector

a sufficiently large number of times. This approach is justified by the weak law of large

numbers, since the sample mean will equal the population mean as the number of samples

goes to infinity. In the context of a simulation optimization algorithm, the total number of

function evaluations is traditionally a limiting factor and thus a trade-off must usually be

made between improving the solution and controlling the sampling error. In this research,
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this balance will be maintained through the use of statistical procedures that require a

minimal number of function evaluations for a given confidence level, thereby preserving

function evaluations for iterate improvement.

Since the selected algorithm relies on comparisons between stochastic responses, a

review of statistical procedures for detecting these differences is warranted. Consider a set

of k candidate design vectors {X1, ...,Xk} under consideration with true objective function

values denoted fi = f(Xi) = E[F (Xi, ψ)], where i = 1, ..., k. The candidate with the ith

best true objective function value will be denoted by X[i], with associated true objective

function f[i]. The desired procedure is one that guarantees selection of X[1] with a user-

specified probability of at least 1− α, which can be expressed as

Pr{select X[1]|f[i] − f[1] ≥ 0, i = 2, ..., k} ≥ 1− α (2.16)

In the case where there are only two candidate design vectors, one can simply use an

appropriate pairwise comparison test (t−test) to perform the selection at the given level of

significance. However, when there are at least three candidates, multiple comparison tests

may be required.

When attempting to determine which candidate provides the best true objective func-

tion value, a common first step in multiple comparison testing is to first determine if there

is a statistically significant difference between the candidates. Assuming that the noise

in each of the responses is independently and identically distributed (i.i.d) normally with

mean zero, the Tukey-Kramer method is a generalization of the pairwise t−test that pro-

duces a common acceptance interval for the differences between sample mean responses for

each member pair of the candidate set. Since the null hypothesis of the test is that all the

candidates have the same mean, there is enough statistical evidence at the given α level
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of significance to state that at least one candidate has a different mean value if any of the

k(k − 1)/2 pairs of mean differences lie outside of the acceptance interval. Although this

result is rather broad, it may provide an indication of which candidate(s) provide a better

response.

After a test of equal means has been performed, multiple comparison testing attempts

to find the candidate that provides the best true objective function value by eliminating

inferior candidates. A standard method to perform this culling of candidates is through

multiple comparison with the best (MCB) testing. By assuming some level of prior in-

formation about which candidate is the optimum, there are only k − 1 pairs of candidates

that require one-way testing, as opposed to the two-way testing of k(k− 1)/2 pairs of can-

didates in the Tukey-Kramer method. Therefore, MCB tests can provide stronger results

than those of the Tukey-Kramer method.

The MCB test can be constructed with a null hypothesis in which all the candidates

produce responses at least as good as the assumed optimum. Thus, just as with the first

multiple comparison test, the desire is to reject this hypothesis. For the assumed optimum

to be the true best, the difference in sample mean responses between the optimum and

each candidate must lie within an "appropriate" acceptance region, which is calculated

from available information. Thus, if Ei represents the event that the difference in sample

mean responses of the optimum and the candidate i lies within the acceptance region (that

candidate i produces a response at least as favorable as the optimum), then the event E that

the optimum is in the overall acceptance region (that all the candidates produce a response

at least as favorable as the optimum) is given by E1 ∩ ...∩Ek. Thus, the probability that

the optimum is the best is given by
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Pr{E} = Pr{E1 ∩ ... ∩Ek} (2.17)

Since Equation (2.16) requires that Pr{E} ≥ 1− α, the joint probability is given by

Pr{E1 ∩ ... ∩Ek} ≥ 1− α (2.18)

The acceptance regions for each of the individual candidates can be calculated by

partitioning the level of confidence α among the candidates. The most straightforward

manner is through the Bonferroni inequality, which produces an acceptance region bound of

Pr{Ei} = (1− α)/(k − 1) (2.19)

for each candidate. If the additional assumption that each of the differences in sample

mean responses between the optimum and the candidate are jointly normally distributed

with mean zero is maintained, then the acceptance region bound can be improved through

the use of the Slepian inequality (see Tong [57, p.8]). The resulting acceptance region

bound for each candidate is given by

Pr{Ei} = (1− α)1/(k−1) (2.20)

Once the individual candidate acceptance regions are formed from the derived level of con-

fidence and the sample variances, the difference in each sample mean response between the

optimum and the candidate is tested against its acceptance bound. If the null hypothesis

is rejected and each of the individual acceptance bounds are broken, then strong evidence

exists that the assumed optimum is the true best.
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From this review, it is apparent that the type of test used for guaranteed correct

selection of the best candidate is dependent on the amount of information available and

simplifying assumptions taken. With this foundation, the development of ranking and

selection procedures and how they apply to this research may be discussed. Trosset [60]

demonstrated that although optimization in the presence of random noise is more difficult

than a noise-free case, statistical testing for iterate selection can be used in pattern search

methods to maintain convergence results. However to do so, the number of replications

per iteration increases faster than the squared reciprocal of the mesh size parameter as the

sequence converges (Trosset [60]). Sriver [55] established an algorithmic framework for GPS

methods with stochastic responses and proposed ranking and selection (R&S) methods for

the statistical testing of GPS iterates. Sriver [55] overcomes the problems identified by

Trosset [60] through the use of an indifference zone.

Ranking and selection methods are slightly different from multiple comparison tests.

The goal of MCBs is to characterize the members of the candidate set; whereas, the goal

of R&S methods is to actively screen the k candidates to find a subset likely to contain the

optimum. MCBs are generally a tool of inference, where the confidence intervals provide

information on how close the systems may be to one another. The resulting confidence

intervals can be combined with other factors in selecting an overall best candidate. R&S

methods are a tool for finding the optimum set without the need to characterize the candi-

date set. Since the focus of this research is strictly concerned with finding improvement,

R&S methods are more applicable.

Proposed by Paulson [47], fully sequential R&S procedures with indifference zone use

a triangular continuation region to determine when enough information has been gathered

to find the optimum. Indifference zone procedures differ slightly with the probability
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Figure 2.7. Triangular Continuation Region

statement in Equation (2.16) by the use of an indifference parameter δ > 0. This user-

selected parameter is essentially the smallest "important" difference between solutions,

often referred to as the practical difference. That is, points with function values within δ

of each other are considered equivalent. These procedures select X[i] with a user-specified

probability of at least 1 − α whenever the difference is worth detecting, which can be

expressed as

Pr{select X[i]|f[i] − f[1] ≤ δ, i = 2, ..., k} ≥ 1− α (2.21)

By approximating the sum of differences between two systems as Brownian motion, Paulson

developed a triangular continuation region, illustrated in Figure 2.7, that acts in part as

an acceptance region of the above comparative tests. The procedure iteratively sums the

difference between the two systems as long as the result lies within the triangular region.

The sum can leave the triangular region in three ways. If the sum crosses the acceptance

bound, then the system associated with the null hypothesis is declared the optimum. If the
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sum crosses the rejection bound, then the system associated with the alternative hypothesis

is declared the optimum. Otherwise, if the sum exits without triggering a bound, the

system with the more favorable average responses is declared the optimum. Thus, the

triangular region indicates when one system is clearly superior to the other, resulting in a

selection of a candidate that satisfies Equation (2.21).

The original R&S procedure has undergone modification to increase efficiency by using

tighter bounds, similar to the use of the Slepian inequality for MCBs acceptance bound.

Hartmann [25] improved upon Paulson’s procedure by replacing Boole’s inequality with a

geometric inequality and using a Brownian motion bound on the acceptance region instead

of a large deviation bound under the assumption of normal and common variance noise.

Kim and Nelson [29] further extend Hartmann’s work by the handling of unequal and

unknown variances. Pichitlamken and Nelson [48] introduced Sequential Selection with

Memory (SSM), which is similar to the Kim and Nelson procedure but includes previously

sampled responses in the current R&S procedure. Sriver [55] demonstrated that SSM per-

formed well with GPS methods in controlling the number of required function evaluations

while guaranteeing the proper level of confidence in the iterate selection. Through the use

of an efficient R&S procedure, the MGPS algorithm within NOMADm can be extended to

stochastic simulation problems without requiring a prohibitive number of function evalua-

tions; therefore, SSM is used in this research to control the selection of iterates.

In addition to modifying the current NOMADm code to handle stochastic simulations,

this research seeks to meet the goals of increasing the computational efficiency of the opti-

mization algorithm and performance testing of appropriate surrogates. As noted by Booker

et al. [10], surrogates that serve as approximations of an expensive simulation, constructed

by interpolating or smoothing known values of the objective, can be used to reduce the
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number of function evaluations required to discover a point that produces decrease. Ad-

ditionally, if the response surface has more than one optimum, the use of surrogates could

lead to stationary points with better objective function values. Therefore, this research ex-

amines the use of surrogates for both local and global searches, which is discussed in more

detail in Chapter 4. In particular, Latin hypercube sampling (LHS) will be used as an

initial space-filling global search while the local search will be aided either by the use of a

parametric model-fitting approach of Kriging or a nonparametric fitting method of kernel

regression.

2.6 Summary

After reviewing the requirements for optimization algorithms to prove convergence to a

stationary point, the GPS class of algorithms are shown to adhere to the same requirements

for convergence as the gradient-based methods. However, since the GPS methods are

suitable for simulation optimization (only requiring simple decrease in objective function

evaluation by the use of a mesh and having been adapted to mixed variable domains), a

GPS methods is used in this research. The next chapter presents the approach for using

GPS with ranking and selection procedures.
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Chapter 3 - Approach

This chapter discusses in more detail the fundamental concepts of the MGPS algorithm

and the ranking and selection procedure used in this research. First, the construction of

the mesh and the poll set of pattern search methods are adapted for mixed variable domains

in a way that maintains convergence properties. Then, a method for handling bound and

linear constraints within MGPS algorithm is described. Finally, the proposed algorithm

modifications are presented with associated implementation considerations.

3.1 Mesh and Poll Set Construction

As noted in Chapter 2, the MGPS algorithm is related to was developed from the

GPS algorithm of Audet and Dennis [6]; thus there are common restrictions imposed on

the iterates to ensure proven convergence to a stationary point. In particular, at any

iteration k, all iterates are required to lie on the mesh Mk. Although the mesh is not

actually constructed, the concept of the mesh is essential to the construction of the ��		

set from which candidate iterates are generated. In order to define the mesh in the context

of MVP problems, first recall the notation presented in Equation (1.3): each vector x ∈ Ω

can be denoted as x = (xc, xd) where xc ∈ Rnc are the continuous variables of dimension

nc and xd ∈ Znd are the discrete variables of dimension nd. By fixing the values of the

integer space Zn
d

, a discrete plane can be defined as a section of the mesh where only the

continuous values may vary. Additionally, since the predefined categorical list is finite,

each discrete plane i, i = 1, ..., imax, can be identified uniquely.

The mesh construction is formulated to provide enough generality to be applicable

to MVP problems, yet revert back to the single discrete plane mesh structure for GPS

methods given in Equation (2.13). In order to guarantee convergence in GPS methods,

the set of directions used to generate the ��		 set must be sufficiently rich to produce a
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descent direction. This condition is met by requiring the direction set to positively span

the domain of the objective function f . The following definitions introduced by Davis [17]

provide the foundation for the use of positive spanning sets within GPS methods:

Definition 3.1 A positive combination of the set of vectors V = {vi}ri=1 is a linear com-

bination
r∑
i=1

civi, where ci ≥ 0, i = 1, 2, . . . , r.

Definition 3.2 A finite set of vectors W = {wi}ri=1 forms a positive spanning set for Rn

if every v ∈ Rn can be expressed as a positive combination of vectors in W . The set of
vectors W is said to positively span Rn.

Definition 3.3 A positive spanning set of vectors W is said to be a positive basis for Rn

if no proper subset of W positively spans Rn.

Davis [17] proved that the cardinality of any positive basis in Rn is between n + 1 (a

minimal set) and 2n (a maximal set). Examples of minimal and maximal sets in matrix

notation can be quickly generated respectively by using the associated matrices [I;−e] and

[I;−I], where I is the identity matrix and e is the vector of ones, and are commonly selected

as the positive bases. The key purpose in using positive spanning sets in GPS is derived

from the theorem:

Theorem 3.4 (Davis [17]) A set D positively spans Rn if and only if, for all nonzero
v ∈ Rn, vTd > 0 for some d ∈ D.

Thus, if a positive spanning set D is constructed at a point x where the gradient ∇f(x)

exists and is nonzero, then by Theorem 3.4 at least one element of D is required to be a

descent direction (since ∇f(x)Td < 0 for some d ∈ D and v = −∇f(x)).

For each discrete plane i = 1, ..., imax, a set of positive spanning directions Di ∈

R
nc×|Di| is constructed by forming the product
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Di = GiZi (3.1)

where Zi ∈ Rnc×|Di| and Gi ∈ Rnc×nc is a nonsingular matrix for the discrete plane. (The

notation is abused here and throughout this document, in that the set Di is represented in

Equation (3.1) as a matrix whose columns are elements of the set.) This additional restric-

tion is required for convergence and is discussed in more detail by Torczon [58]. Although

a common choice for Gi is the identity matrix, Audet and Dennis [5] note that the generat-

ing matrices Gi (and thus Di) that define the discrete plane meshes can be determined as

the iteration unfolds as long as only a finite number of them are generated. Therefore, the

use of Equation (3.1) in restricting the selection of positive spanning directions maintains

the original flexibility from the GPS methods, but allows for MVP problem structures and

reduces to the single discrete plane version used in GPS methods when discrete variables

are absent.

The mesh is formed as the direct product of Xd with the union of the local meshes for

each possible categorical combination setting, which can be expressed as

Mk = Xd ×
⋃imax

i=1
{xck +∆kD

iz ∈ Xc : z ∈ Z|Di|
+ } (3.2)

where xck ∈ Rn
c

is the current iterate and ∆k is the mesh size parameter. The ��		 set

Pk is composed of the continuous neighbors of the current incumbent xk in the directions

of the columns of Di
k; thus the ��		 set can be expressed as

Pk = {xk +∆k(d, 0) ∈ Ω : d ∈ Di
k} (3.3)

48



where the current iterate xk ∈ Ω lies in the discrete plane i, ∆k ∈ R is the mesh size

parameter, and Di
k ⊆ Di is the current positive spanning set of the discrete plane i. The

notation (d, 0) indicates that only the continuous variables may change; thus,

xk +∆k(d, 0) = (xck +∆kd, x
d
k).

3.2 Optimality for Mixed Variable Domains

In order to properly apply optimization algorithms for MVP problems, some basic

conceptual definitions used in optimization must be adapted to mixed variable domains.

For example, the notion of local optimality must be revised to take into account the discrete

planes illustrated by the structure of the mesh. Because continuous and (traditional)

discrete variables can be represented as ordered sets, local optimality is well-defined in

terms of local neighborhoods; however, for categorical variables, the concept of a local

neighborhood must be defined by the user. Abramson [2] defines the set of discrete

neighbors in terms of a set-valued function as N : Ω −→ 2Ω, where 2Ω denotes the power

set, which is the set of all possible subsets of Ω. Thus, y ∈ N (x), means that y is a discrete

neighbor of x. In the context of MVP problems, all iterates are required to lie on the mesh;

therefore the function N must be constructed so that every discrete neighbor of the current

iterate must also lie on the mesh, i.e. N (xk) ⊆Mk for all k = 0, 1, ... Since the categorical

variables are limited to a predefined list, N (x) is required to be finite. Additionally, the

set-valued function N has the reflective property, so that x ∈ N(x) for each x ∈ Ω.

With a well-defined neighborhood function for the categorical variables, local optimal-

ity in a mixed variable domain can now be defined in terms of the discrete neighbor set.

Definition 3.5 A point x = (xc, xd) ∈ Ω is a local minimizer of f with respect to the set
of neighbors N (x) ⊂ Ω if there exists an ε > 0 such that f(x) ≤ f(v) for all v in the set

Ω ∩
⋃

y∈N (x)

(B(yc, ε)× yd) (3.4)

49



where B(yc, ε) is an open ball of radius ε centered at yc. Because this definition applies to

the local neighborhoods of all the discrete planes in the discrete neighbor set, this definition

imposes a stronger condition than simply requiring optimality with respect to the discrete

neighbor set and the local continuous neighborhood of the incumbent. Additionally, the

quality of the local minimizer is directly related to the definition of N . By increasing the

number of members in the discrete neighbor set, the local minimizer becomes more global;

however, the number of function evaluations needed to satisfy the optimality condition

increases.

In general, optimization requires that for a point to be considered a local minimizer,

a first-order necessary condition must be satisfied. As with the previous definition, this

condition also requires revision in order to apply to the mixed variable domain. In doing

so, ∇cf denotes the gradient of f with respect to the continuous variables. The following

definition given by Sriver [55] is presented by Lucidi et al. [38] in a different form:

Definition 3.6 A point x ∈ Ω satisfies first-order necessary conditions for optimality if

1. (wc − xc)T∇cf(x) ≥ 0 for any feasible (wc, xd) ∈ Ω;

2. f(x) ≤ f(y) for any discrete neighbor y ∈ N (x) ⊂ Ω;

3. (wc − yc)T∇cf(y) ≥ 0 for any discrete neighbor y ∈ N (x) satisfying f(y) = f(x) and
for any feasible (wc, yd) ∈ Ω.

Definition 3.6 requires stationarity at x with respect to the continuous variables (con-

dition 1), optimality with respect to the discrete neighbors (condition 2), and stationarity

with respect to the continuous variables at each discrete neighbor of x (condition 3). Fi-

nally, the definition of convergence must be revised to fit within the context of a mixed

variable domain.
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Definition 3.7 (Abramson [2]) Let Ω ⊆ (Rn
c × Znd) be a mixed variable domain. A

sequence {xi} ∈ Ω is said to converge to x ∈ Ω if, for every ε > 0, there exists a positive
integer N such that xdi = xd and ‖xci − xc‖ < ε for all i > N .

Under the mild conditions, Audet and Dennis [5] showed that for bound constrained

optimization of MVP problems, the MGPS algorithm converges to a point satisfying the

first-order necessary conditions for optimality, which is extended to linear constraints by

Abramson [2].

3.3 Bound and Linear Constraints

For bound and linear constraints, the barrier approach described in Section 2.4.1 is

applied in conjunction with the tangent cone generator approach of Lewis and Torczon [36]

across each discrete plane. In the barrier approach, infeasible points are not evaluated and

their function values are set to +∞. While this prevents infeasible points from replacing

the incumbent, it does not guarantee convergence to a stationary point. Lewis and Torczon

[36] establish that, in order for GPS to converge to a first-order stationary point of a

linearly constrained problem, each direction set Di must be sufficiently rich so that the

polling directions Di
k can be chosen to conform to the geometry of the nearby constraint

boundaries. This is done by including in each Di the tangent cone generators for every

point in Ωc. The tangent cone is defined as follows (Nocedal and Wright [46]):

Definition 3.8 A vector w ∈ Rn is tangent to X at x ∈ X if, for all vector sequences
{xi} with xi → x and xi ∈ X, and all positive scalar sequences ti ↓ 0, there is a sequence
wi → w such that xi + tiwi ∈ X for all i. The tangent cone at x is the collection of all
tangent vectors to X at x.

Since linear constraints form a convex set, for x ∈ X, the tangent cone to X at x can be

expressed as TX(x) = cl{µ(w − x) : µ ≥ 0, w ∈ X}.
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Figure 3.1. Tangent Cone Near Boundary (adapted from Lewis and Torczon [36])

As presented by Lewis and Torczon [36], algorithms which conform to the geometry

of the linear constraint boundaries need to conform only to the nearby boundaries. If the

current iterate is within ε > 0 of a constraint boundary, then the tangent cone Ko(x, ε)

can be represented as the polar of the cone K(x, ε) of normals for the constraints within ε

of xk. A representative of the geometric relationship between these boundaries and cones

is illustrated in Figure 3.1.

The following definition from Audet and Dennis [6] formalizes this concept.

Definition 3.9 A rule for selecting the positive spanning sets Dk = D(k, xk) ⊆ D conforms
to X for some ε > 0, if at each iteration k and for each y in the boundary of X for which
‖y − xk‖ < ε, TX(y) is generated by nonnegative linear combination of the columns of a
subset Dy

k of Dk.

By this definition, when xk ∈ Ω is not near a boundary, there are no additional requirements

imposed on the positive spanning set; it is only when xk ∈ Ω is near a boundary that the

positive spanning set is required to contain directions that conform to the boundaries of

the active constraints.
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3.4 MGPS Algorithm

The mixed variable generalized pattern search (MGPS) algorithm for deterministic

optimization extends GPS methods to MVP problems through modification to the polling

performed on the feasible region. As noted in Section 2.4.1, the ������ step is not required

to guarantee convergence; thus the only restriction of the ������ step is that it evaluates

a finite number of mesh points, denoted as Sk ⊂ Mk. Since the mesh is defined for all the

discrete planes of the MVP structure, it should be noted that in the MGPS algorithm the

search for points of improvement is not limited to the current discrete plane.

For the treatment of categorical variables, polling in the feasible region is conducted

in separate ��		 and �
���
�
 ��		 steps. At iteration k, the ��		 step evaluates

points from the set Pk(xk) and from the set of discrete neighbors N (xk). If the algorithm

fails to find improvement from the ������ and ��		 steps, the �
���
�
 ��		 step is

conducted to poll around points in the set of discrete neighbors whose objective function

value is sufficiently close to that of the incumbent. To identify such points, the extended

poll condition, given by

f(xk) ≤ f(y) < f(xk) + ξk (3.5)

must be satisfied by a point y ∈ N (xk) in the discrete neighbor set of the incumbent xk,

to be considered for extended polling. The ξk parameter, referred to as the extended poll

trigger at iteration k, is a scalar satisfying ξk ≥ ξ > 0, where ξ is a user-defined lower

bound. It is typically set as a percentage of the objective function value (but bounded

away from zero) (see Abramson [2]). In a manner similar to the user-defined neighbor set,

the quality of the local minimizer is determined in part by the selection of the tolerance
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value ξ. By increasing ξ, the search for points of improvement becomes more global, since

extended polling will be triggered more frequently.

For discrete neighbors that satisfy the extended poll condition, polling is conducted in

a manner similar to the ��		 step of the original GPS method; that is, polling is restricted

to the discrete plane of the current discrete neighbor point. By initiating the polling around

a particular discrete neighbor yk, the extended polling sequence {yjk}Jkj=1 is terminated when

either f(yJkk + ∆k(d, 0)) < f(xk) for some d ∈ Dk(y
Jk
k ) or f(xk) ≤ f(yJkk + ∆k(d, 0)) for

all d ∈ Dk(y
Jk
k ), where Jk is the total number of extended poll points considered in the

�
���
�
 ��		 step. By this construction of extended polling, the set of extended poll

points evaluated about a particular discrete neighbor yk can be denoted as

E(yk) =
{
Pk(y

j
k)
}Jk
j=1

(3.6)

regardless of the terminating condition of the polling sequence. Thus, the set of all extended

poll points considered by the �
���
�
 ��		 step at iteration k is defined as

Xk(Ek) =
⋃

y∈N ξ

k

E(yk) (3.7)

where N ξ
k = {y ∈ N (xk) : f(xk) ≤ f(y) < f(xk) + ξk} is the subset of discrete neighbors

that trigger extended polling.

The trial set Tk that is used to conditionally update the mesh size parameter can now

be expressed as the union of all the iterates generated by the ������, ��		, and �
���
�


��		 steps, denoted as Tk = Sk∪Pk(xk)∪N (xk)∪Xk(Ek). Abramson [2] uses this notation

to formalize the following definitions for MVP problems:

Definition 3.10 If f(y) < f(xk) for some y ∈ Tk, then y is said to be an improved mesh
point.
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Definition 3.11 If f(y) ≥ f(xk) for all y ∈ Pk(xk)∪N (xk)∪Xk(Ek), then y is said to be
a mesh local optimizer.

The updating of the mesh parameter is performed in exactly the same manner as in

the original GPS method, given in Figure 2.6. Specifically, when an improved mesh point

is found within trial set Tk, the iteration is considered successful and the mesh parameter

is updated as

∆k+1 = τmk∆k (3.8)

where τ > 1 is a rational number that remains constant over all iterations, and the integer

mk satisfies 0 ≤ mk ≤ mmax for some fixed integer mmax ≥ 0. However, if the iteration is

unsuccessful, then the mesh parameter is updated as

∆k+1 = τmk∆k (3.9)

where τ > 1 is a rational number that remains constant over all iterations, τmk ∈ (0, 1),

and the integer mk satisfies mmin ≤ mk ≤ −1 for some fixed integer mmin.

The Audet and Dennis [5] MGPS algorithm for deterministic bound constrained opti-

mization is shown in Figure 3.2. Under the mild assumptions that the level set

LΩ(x0) = {x ∈ Ω : f(x) ≤ f(x0)} (3.10)

is compact and the objective function f is continuously differentiable over a neighborhood of

LΩ(x0) when the discrete variables are fixed, and the rule for selecting directions conforms

to Ωc for some ε > 0, then the MGPS algorithm converges to a point satisfying the first-

order necessary conditions for optimality.
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Mixed Variable Generalized Pattern Search (MGPS) Algorithm

Initialization: Choose a feasible starting point x0 such that fΩ(x0) <∞.
Set a discrete neighbor set N and extended poll trigger ξ > 0.
Let D be a positive spanning set.
Let the M0 ⊂ Ω be the mesh defined by mesh size parameter ∆0 > 0 and D0 ∈ D.
Set the iteration counter k to 0.

For k = 0, 1, ...

1. Set extended poll trigger ξk ≥ ξ.

2. ������ Step (Optional): Employ some finite strategy seeking an improved mesh point;
i.e., xk+1 ∈Mk such that fΩ(xk+1) < fΩ(xk).

3. ��		 Step: If the ������ step does not find an improved mesh point, evaluate fΩ at
the points in Pk(xk) ∪N (xk) until an improved mesh point xk+1 is found (or until done).

4. �
���
�
 ��		 step: If the ������ and ��		 steps did not find improved mesh
point, evaluate f at points in Xk(ξk) until either an improved mesh point xk+1 is found (or
until done).

5. Update: If ������, ��		 or �
���
�
 ��		 finds an improved mesh point, then
update xk+1, and set ∆k+1 = τmk∆k ≥ ∆k where τ > 1 is a rational number that remains
constant over all iterations, and the integer mk satisfies 0 ≤ mk ≤mmax for some fixed integer
mmax ≥ 0;

Otherwise, set xk+1 = xk, and set ∆k+1 = τmk∆k < ∆k where τ > 1 is a rational number that
remains constant over all iterations, τmk ∈ (0, 1), and the integer mk satisfies mmin ≤ mk ≤ −1
for some fixed integer mmin.

6. Terminate the algorithm if the stopping criterion is met or if the budget of function
evaluations is reached; otherwise, return to step 1.

Figure 3.2. MGPS Algorithm for Deterministic Optimization (adapted from Abramson [2])

3.5 Proposed Modifications

Modifications for improving the efficiency of MGPS and extending the applicability

of NOMADm to stochastic simulations are now presented. The following two subsections

describe both the purpose behind and the incorporation of the modifications presented in

Section 1.2.
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3.5.1 Search Approach

As noted in Section 2.4.2, the ������ step in the GPS algorithm allows the user the

flexibility to employ any finite heuristic in an attempt to quickly find improvement. While

the ������ step contributes nothing to the convergence theory, a wise choice can greatly

increase efficiency and even affect the quality (Booker et al. [9]).

For MVP problems, Audet and Dennis [5] retained the ������ step in the MGPS

algorithm. As noted in Section 3.4, because the mesh is defined across all the possible

categorical settings, the search can be applied globally. If the ������ step is unsuccessful in

finding an improved mesh point, the algorithm simply proceeds to the next step. However,

if the ������ step locates a improved mesh point, the incumbent is replaced, ∆k is updated,

and the current iteration ends. Thus, an efficient search can lead to a reduction in function

evaluations to reach a local optimizer.

The need for a modification of the MGPS algorithm can be illustrated by the case in

which a ������ step would locate a point w in a discrete plane with different categorical

settings than the incumbent. Under the current algorithm, a ������ step is only per-

formed prior to the ��		 step; thus, a user is limited to the discrete planes on which a

search heuristic may be applied. Thus, under the standard application of MGPS, the user

would have to perform a complete MGPS iteration before performing the ������ step that

would locate the point w. The proposed change to the MGPS algorithm is to include an

�
���
�
 ������ step that provides the user the ability to employ a finite search heuris-

tic on any of the discrete planes before the �
���
�
 ��		 step is performed.

The �
���
�
 ������ step can increase the efficiency of the algorithm not only by

reducing the number of required iterations, but also by reducing the sampling requirements

when surrogates are used. Since the �
���
�
 ������ step occurs after the ��		 step,
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a user could choose to construct surrogates only for those discrete planes that indicate

areas of possible improvement, i.e. those that correspond to discrete neighbors that trigger

extended polling. Because a space-filling set of points is commonly used in constructing an

initial surrogate, the �
���
�
 ������ step provides a means for constructing surrogates

only as required, without doing so for every discrete plane.

Another user option that this step introduces is the extended polling of points gener-

ated by the �
���
�
 ������ step. Suppose that the point w does not provide strict

improvement over the incumbent xk but provides strict improvement over the discrete

neighbor of the incumbent y ∈ N (xk). Since f(w) ≥ f(xk), the point w is not considered

an improved mesh point and the algorithm would progress from a ������ step to a ��		

step. However, since the objective function value of the point w indicates a possible area of

improvement, the user may consider polling around the point w in addition to the discrete

neighbor y during the �
���
�
 ��		 step. From a convergence standpoint, it is impor-

tant to note that one cannot directly replace the discrete neighbor y in the �
���
�
 ��		

with a point in the discrete plane that provides strict improvement with respect to the dis-

crete neighbor, such as the point w. If the last iterate of the �
���
�
 ��		 initiated at

the point x is denoted as zk(x), then there is no guarantee that f(zk(w)) ≤ f(zk(y)).

In a manner similar to the ������ step, the �
���
�
 ������ step provides the user

the ability to employ a finite search heuristic to accelerate the convergence of the algorithm

without affecting the underlying convergence theory. As a result, the computational effi-

ciency of the MGPS algorithm can be increased by including the �
���
�
 ������ step

without requiring new convergence results.
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3.5.2 R&S Procedure

Sriver [55] showed that under mild assumptions a R&S procedure can be used in a

MGPS algorithm for stochastic systems to provide almost sure convergence to an appro-

priately defined first-order stationary point. The assumptions can be divided into those

relating to the algorithm (presented for the MGPS algorithm in Section 3.3) and those re-

lating to the statistical properties of the problem and R&S procedure selected (provided

in this section). Just as in Section 3.2, the special structure of MVP problems requires a

revision of almost sure convergence to include the mixed variable domain found in Sriver’s

work.

Definition 3.12 Let Ω ⊆ (Rn
c × Znd) be a mixed variable domain. A sequence of

multivariate random vectors {Xk} converges almost surely (a.s.) to the limit point x ∈ Ω
if, for every ε > 0, there exists a positive integer N such that Pr{Xd

k = xd} = 1 and
Pr{‖Xc

k − xc‖ < ε} = 1 for all k > N.

As part of numerical testing, Sriver [55] performed a comparative analysis of com-

peting direct search methods under various R&S procedures; namely, Rinott’s two stage

procedure [51], a screen-and-select procedure of Nelson et al. [45], and Sequential Selection

with Memory (SSM) of Pichitlamken and Nelson [48]. Since SSM was reported from the

comparative analysis to offer performance advantages over the other R&S procedures, it

was chosen as the R&S procedure to implement in this research.

As noted in Section 2.5, SSM is a fully sequential procedure specifically designed for

iterative search routines, in which one sample at a time is taken from every candidate still

in play and eliminates clearly inferior ones as soon as their inferiority is apparent. In order

to locate inferior candidates, SSM performs a pairwise statistical test at every iteration for

each of the candidates. By removing the candidates that are statistically inferior to all the

other members of the candidate set, SSM provides a computationally efficient procedure to
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Figure 3.3. Triangular Continuation Region for SSM

select the best candidate. Another advantage of SSM is the utilization of previously stored

sampling data, which alleviates some of the computational burden of obtaining additional

simulation outputs at each iteration of the optimization algorithm.

The key in understanding SSM is the concept of the triangular continuation region,

which is now detailed. It is constructed as the result of an initial stage of sampling used

to estimate the variances between each pair of candidates. Using the notation of Section

2.5, with Xip, p = 1, ...rmax, denoting the replications of candidate Xi, for i = 1, ..., k, the

estimate of the variances between each pair of candidates σ2ij = V[Xip−Xjp] is calculated as

S2ij =
1

s0 − 1

∑s0

p=1
(Fip − Fjp − [F̄i(s0)− F̄j(s0)])

2 (3.11)

where i and j = 1, ..., k, s0 is the user-defined number of initial replications and

F̄i(s0) =
1
s0

∑s0
p=1Xip.
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The resulting variance estimates, together with the user-defined indifference zone pa-

rameter δ and level of significance parameter α, establish the parameters of the triangular

continuation area; namely,

λ =
δ

2c
and aij =

η(s0 − 1)S2ij
4(δ − λ)

(3.12)

where the recommended values for c ∈ R and η ∈ R are 1 and ((k − 1)/(2α))2/(s0−1)−1, re-

spectively. The general triangular continuation region for the SSM procedure is illustrated

in Figure 3.3, where r represents the number of samples of the SSM procedure.

Recall from Section 2.5 that Hartmann [25] replaced the large deviation bound by a

Brownian motion bound on the acceptance region. Let B(t; δ, σ2) denote the Brownian

motion process with E[B(t; δ, σ2)] = δt and V[B(t; δ, σ2)] = σ2t. Hartmann [25] demon-

strated that the Brownian motion process B(t; δ, σ2) with δ > 0,m > 0, λ > 0, and stopping

time defined as

T = inf{t : |B(t; δ, σ2)| ≥ λ(m− t)} (3.13)

exits toward the lower boundary of the continuation region with probability

Pr{B(t; δ, σ2) < 0} =
∫ ∞

−∞

e−2λε/σ

1 + e−2λε/σ
φ(

ε = (mδ/σ)√
m

)
dε√
m

(3.14)

Since the triangular region defines an incorrect selection as breaking the lower bound

of the triangular region, the total probability that the SSM procedure selects the wrong

candidate is given by

∑k−1

i=1
E[Pr{B(t; δ, σ2ik) < 0}] (3.15)
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Fabian [22] showed that when λ = δ/2c and m = aik/λ, Equation (3.15) is equivalent

to

∑k−1

i=1

∑c

ℓ=1
(−1)ℓ+1[1− 1

2
I(ℓ = c) exp{(2c− ℓ)

2c− 1
(
−2aik
σ2ik

)(δ − λ)}] (3.16)

where I is the indicator function.

By substitution of the recommended values for λ and aij from Equation (3.12) and un-

der the assumption that the candidates are normally distributed, the expression in Equation

(3.16) is equivalent to α, which produces the desired level of significance and indifference

given by Equation (2.21).

Using this construction of the triangular continuation region, the maximization pro-

cedure of SSM (see Pichitlamken and Nelson [49]) can be converted into the required min-

imization selection procedure for this research. The resulting procedure, using the recom-

mended values for c and η, is given in Figure 3.4.

As part of the convergence analysis for the MGPS-RS algorithm, Sriver [55] demon-

strated that by using a MGPS algorithm, almost sure convergence for stochastic systems

is guaranteed by enforcing the following assumptions:

A1: All iterates Xk produced by the MGPS algorithm lie in a compact set.

A2: The objective function f is continuously differentiable with respect to the continuous

variables.

A3: For each set of discrete variables Xd, the corresponding set of directions Di = GiZi,

as defined in (3.1), includes tangent cone generators for every point in Xc.

A4: The rule for selecting directions Di
k conforms to Xc for some ε > 0 (see Definition 3.9).
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Sequential Selection with Memory Procedure

Initialization: Choose a number of stage zero samples s0 ≥ 2.
Let sic denote the number of previously stored responses of candidate Xi.
For any member Xi ∈ {X1,...,Xk} with a stored responses sic < s0, collect s0 − sic more
responses.
Choose a significance level 1k < 1− α < 1 and indifference zone parameter δ.

1. Estimate σ2ij = V[Xip −Xjp] with

S2ij =
1

s0 − 1

s0∑

p=1

(Fip − Fjp − [F̄i(s0)− F̄j(s0)])
2

2. Compute the procedure parameters as

λ =
δ

2
and aij =

η(s0 − 1)S2ij
4(δ − λ)

where η = ((k − 1)/(2α))2/(sij−1)−1.

3. Let Nij =
⌊aij
λ

⌋
, Ni = maxi �=j{Nij}, N = max1≤i≤k Ni. If s0 > N, then stop and select

the candidate with the smallest sample mean as the best. Otherwise, let I = {1, . . . , k} be the
set of surviving solutions, set counter r = s0 and proceed to Step 4.

4. Set Iold = I. Let

I =

{
i : i ∈ Iold and Ri ≤ min

i∈Iold,j �=i
(Rj + aij)−

rδ

2

}

where

Rj =

{ ∑r
p=1Xjp, if sic < r

r
sjc

(
∑sjc
p=1Xjp), otherwise

5. If |I| = 1, then stop and report the only survivor as the best; otherwise, for each candidate
Xi ∈ {i ∈ I : sic < r + 1} collect one additional response sample and set r = r + 1.
If r = N + 1, terminate the procedure and select the solution in I with the smallest sample
mean as the best; otherwise, for each i ∈ I go to Step 4.

Figure 3.4. Sequential Selection with Memory (adapted from Pichitlamken and Nelson [48])

A5: For each i = 1, 2, . . . , k, the responses {Fip}rmaxp=1 are independent, identically and

normally distributed random variables with mean f(Xi) and unknown variance σ2i < ∞,

where σ2ℓ �= σ2q whenever ℓ �= q.

A6: The sequence of significance levels {αr} satisfies
∑∞
r=0 αr < ∞, and the sequence of

indifference zone parameters {δr} satisfies limr→∞ δr = 0.
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A7: For the rth R&S procedure, the probability of correctly selecting the best candidate

X[1] is at least 1− αr whenever f(Y[i])− f(Y[1]) ≥ δr for any i ∈ {2, 3, . . . , k}.

A8: For all but a finite number of MGPS iterations and sub-iterations, the best solution

X[1] is unique; i.e., f(X[1]) �= f(X[i]) for all i ∈ {2, 3, . . . , k}, where each member of the

candidate set lies on the mesh defined at iteration k.

Assumption A1 is a standard assumption of the MGPS algorithm. A simplifying

assumption on the target class of problems for this research is represented by A2. As-

sumptions A3 and A4 are required for convergence of the MGPS algorithm. Assumption

A5 is a common requirement for R&S techniques and can be achieved in simulation by

batching the output data or the use of sample averages of independent replications Nelson

et al. [45]. Assumption A6 is a requirement imposed by the convergence theory presented

by Sriver [55]. By requiring the R&S parameters to decay, the incumbents are forced to

provide almost sure convergence to a limit point. Assumption A7 enforces the iterative

correct selection guarantee of the R&S procedure from Equation (2.21). Finally, assump-

tion A8 is required to ensure that the indifference zone condition is eventually met during

the course of the iteration sequence.

Since the proposed modification to the MGPS algorithm does not alter the underly-

ing convergence theory, implementation of the �
���
�
 ������ step does not violate

assumptions A1-A4. Additionally, by placing an update step within the modified algo-

rithm, in a similar manner as Sriver’s [55] MGPS-RS algorithm , assumption A6 is main-

tained. The remaining assumptions A5, A7, and A8 can be satisfied by proper selection

of the simulation model and R&S procedure. Therefore, the modified MGPS algorithm,

presented in Figure 3.5, provides almost sure convergence to a first-order stationary point
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Modified Mixed Variable Generalized Pattern Search Algorithm

Initialization: Choose a feasible starting point x0 such that fΩ(x0) <∞.
Set a discrete neighbor set N and extended poll trigger ξ > 0.
Let D be a positive spanning set.
Let the M0 ⊂ Ω be the mesh defined by mesh size parameter ∆0 > 0 and D0 ∈ D.
Set the R&S parameters α0 ∈ (0, 1), and δ0 > 0.
Set the iteration counter k to 0.
Set the R&S counter r to 0.

For k = 0, 1, ...

1. Set extended poll trigger ξk ≥ ξ.

2. ������ Step (Optional): Using an R&S procedure with parameters αr and δr for
candidate evaluation, employ some finite strategy seeking an improved mesh point.
Update αr+1 < αr, δr+1 < δr, and r = r + 1.

3. ��		 Step: If the ������ step does not find an improved mesh point, evaluate fΩ at
the points in Pk(xk) ∪N (xk), using an R&S procedure with parameters αr and δr, until an
improved mesh point xk+1 is found (or until done).
Update αr+1 < αr, δr+1 < δr, and r = r + 1.

4. �
���
�
 ������ Step (Optional): Using an R&S procedure with parameters αr
and δr for candidate evaluation, employ some finite strategy seeking an improved mesh point.
Update αr+1 < αr, δr+1 < δr, and r = r + 1.

5. �
���
�
 ��		 step: If the ������, ��		, and �
���
�
 ������ steps did
not find improved mesh point, evaluate f at points in Xk(ξk), using an R&S procedure with
parameters αr and δr, until either an improved mesh point xk+1 is found (or until done).
Update αr+1 < αr, δr+1 < δr, and r = r + 1.

6. Update: If ������, ��		 or �
���
�
 ��		 finds an improved mesh point, then
update xk+1, and set ∆k+1 = τmk∆k ≥ ∆k where τ > 1 is a rational number that remains
constant over all iterations, and the integer mk satisfies 0 ≤ mk ≤mmax for some fixed integer
mmax ≥ 0;

Otherwise, set xk+1 = xk, and set ∆k+1 = τmk∆k < ∆k where τ > 1 is a rational number that
remains constant over all iterations, τmk ∈ (0, 1), and the integer mk satisfies mmin ≤ mk ≤ −1
for some fixed integer mmin.

7. Terminate the algorithm if the stopping criterion is met or if the budget of function
evaluations is reached; otherwise, return to step 1.

Figure 3.5. Modified MGPS Algorithm for Simulation Optimization

for stochastic simulation systems, and converges to a first-order stationary point for deter-

ministic simulation systems.
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3.6 Implementation Considerations

With the modified MGPS-RS algorithm explained, issues concerning the implementa-

tion of the modified code into NOMADm may now be discussed. Although SSM allows for

the re-use of historical data of all previously sampled iterates in future R&S procedures, in

this research only the data for the current incumbent is maintained. Since NOMADm was

originally developed for deterministic simulations, data corresponding to previously sam-

pled iterates are maintained in a cache structure to prevent re-sampling of the same point,

thus reducing the overall number of required function evaluations. However, the random-

ness in stochastic problems makes it at least possible that a previously evaluated trial point

is, in truth, a better point, and would be discovered to be so with more replications. If the

R&S parameters are not relatively small enough when an iterate is initially sampled, the

data stored in the cache of NOMADm may be inaccurate. Since the costs of storing com-

plete iterate data can be prohibitive, the objective function values of stochastic simulation

responses are estimated and entered in the cache as the sample mean; thus the estimate

can be inaccurate unless R&S parameters are relatively small. Then in future samplings,

when the R&S parameters are tight enough to produce an accurate estimate, the iterate

will never be re-sampled or eligible to replace the incumbent point since it is already in

the cache. This issue is partially remedied by the assumption that the initial point is not

too close to the optimal and by the fact that the mesh is refined over time, thus allowing

for the possibility of future samplings that are near the cached point to be evaluated accu-

rately. Although the incumbent’s sample mean is entered into the cache, the sample data

for the incumbent is maintained outside of the cache. Once the incumbent is replaced, the

historical data is updated by the new incumbent. The reason that this exception is made

66



for the incumbent is that the incumbent is the most frequently compared point and thus

this is expected to produce the largest computational savings.

The use of an �
���
�
 ������ step also introduces an issue when considering

modification to the NOMADm code. Since the original ������ was performed before the

��		 step, NOMADm was designed to only sample on the local mesh of the incumbent.

Although the �
���
�
 ������ allows for a more global search, sections of the ������

routine had to be changed to avoid the creation of a surrogate across different categorical

settings. Specifically, at each iteration, the cache is now filtered to include only those

iterates that have the same categorical variable values as the incumbent. Additionally,

since the number of function evaluations needed to create a surrogate for every discrete

neighbor can quickly exceed the number of function evaluations saved by the use of the

surrogate, a surrogate is only built when a discrete neighbor point triggers the extended

polling condition (see Equation (3.5)). This avoids the building of surrogates for every

possible discrete neighbor, as is done by Sriver [55], and is more general than the original

MGPS algorithm.

3.7 Summary

This chapter detailed the requirements for the MGPS algorithm to converge to a point

satisfying the first-order necessary condition in the context of a mixed variable domain.

Additionally, the modified algorithm with the sequential selection with memory procedure

was presented. In the next chapter, the efficiency of using the modified algorithm within

the NOMADm is examined through a computational evaluation.
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Chapter 4 - Computational Evaluation

In this chapter, the proposed optimization algorithm is implemented on test problems

to characterize its applicability to general engineering design problems. The surrogate

approaches that are used in the testing are described in order to explain their selection and

purpose. Then, the design of the experimental investigation is presented, including the

test problem and series of runs performed. Finally, the results are analyzed with a focus

on the computational efficiency of the modified algorithm.

4.1 Research Surrogates

As mentioned in Section 2.5, an inexpensive surrogate constructed by interpolating

or smoothing known values can improve the efficiency of the optimization algorithm by

reducing the number of function evaluations required to locate a point that produces a

decrease. In order to limit the number of additional function evaluations, the surrogates

used in this research are constructed as approximations of the true objective function and

are based on previously computed responses that are stored by NOMADm in a cache. The

resulting surface is then used in the ������ step to select candidate points that actively

seek regions of improved mesh points.

Although the use of a surrogate requires an investment of initial function evaluations

and each ������ step requires additional function evaluations, if the surrogate can suc-

cessfully locate areas of improvement, then the surrogate may accelerate the convergence

of the algorithm to a stationary point. As a result, the use of surrogates may reduce the

overall number of function evaluations for an optimization algorithm to produce an appro-

priate solution. To increase the likelihood that the surrogate is able to find such areas

of improvement, and thus contribute positively to the optimization algorithm, surrogates

are traditionally selected to incorporate some knowledge of the underlying system. Since
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the responses in this optimization problem are assumed to be generated by a "black box"

system, the selection of surrogates is limited by the general information that the assump-

tions of the problem type provide. In particular, the objective function is assumed to be

continuously differentiable; thus this research uses surrogates that assume the underlying

approximated surface is smooth. Two general methods that use this smoothness assump-

tion are the nonparametric approach of kernel regression and the parametric approach of

Kriging.

4.1.1 Kernel Regression

As presented by Härdle [24], the basic idea of smoothing of a dataset {(Xi, Yi)}ni=1

involves the approximation of the mean response curve f in the regression relationship

Yi = f(Xi) + εi (4.1)

where i = 1, .., n and in the context of this research, Xi are design vectors, Yi are the

averaged responses of the associated Xi vector, and εi is random noise of the system. The

underlying assumption is that, if f is smooth, then an observation Xi near x should contain

information about the value of f at x. Kernel regression is a means of quantifying this linear

relationship. The approximation of the mean response curve f is traditionally calculated

by the Nadaraya-Watson estimator ([42] and [62]) that uses a weighted sequence based on

a kernel. For the two dimensional case, the Nadaraya-Watson estimator is given as

f̂(x) =

∑n
i=1Kh(x−Xi)Yi∑n
i=1Kh(x−Xi)

(4.2)
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where Kh(u) = h−1K(u/h) is the kernel with bandwidth parameter h > 0. The kernel is

defined as a continuous, bounded and symmetric real function K which integrates to unity

(Härdle [24]); that is,

∫ +∞

−∞
K(u)du = 1 (4.3)

The kernel defines the shape of the surface between known response points. In this

research, it is assumed that the decay from a known response is normally distributed;

thus, the Gaussian kernel, K(u) = exp(−u2/2)/
√
2π, is used. The bandwidth of the kernel

represents how much weight is placed on the interpolation with respect to the distance from

the known response points. Once the kernel is chosen, the estimator can be re-written in

a form that illustrates the dependence of the estimator function on the bandwidth. For

this research, the resulting estimator function can be expressed as

f̂(xj, h) =

N∑

ℓ=1,ℓ�=j

F̄ℓ exp
(
−D2

ℓ

2h2

)

N∑

ℓ=1,ℓ�=j

exp
(
−D2

ℓ

2h2

) (4.4)

where D2
j = ‖x− xj‖22 represents the squared Euclidean distance from x to xj . As Sriver

noted [55], the bandwidth h essentially determines the degree of nonlinearity in the surro-

gate function. As h increases, the curvature in f̂ decreases such that, when h is very large,

f̂ is a constant that assumes the mean value of all F̄j; i.e., f̂ → 1
N

∑N
j=1 F̄j as h → ∞.

Smaller values of h allow more curvature in f̂ but can cause outliers to have too great an

effect on the estimate. As h→ 0, f̂ assumes the value of F̄j for the corresponding xj that

is nearest the estimation point.
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Since the accuracy of the estimator depends mainly on the bandwidth parameter h,

several bandwidth selection procedures have been introduced (see Härdle [24]). The one

employed in this research is the leave-one-out cross-validation method, in which the sum

of squares error (SSE)

SSE(h) =
N∑

j=1

(f̂(xj, h)− F̄j)
2 (4.5)

is calculated by omitting, in turn, each design vector xj in Equation (4.4). The resulting

function SSE can then be optimized separately to determine an appropriate bandwidth

setting for the parameter h.

4.1.2 Kriging

Similar to kernel regression, Kriging uses the smoothness assumption of the objective

function to estimate responses under the context that the closer the inputs are, the more

positively correlated are their outputs (van Beers and Kleijnen [61]). Although the over-

all assumption of the surface is the same, the generation of estimation functions is quite

different. Not only is Kriging a parametric method, but it is also an exact interpolator,

in that it produces predicted values at observed input values that are exactly equal to the

simulated output values.

Although Kriging was originally developed as an analysis method for mining applica-

tions (see Krige [32]), it has become a popular multidisciplinary method of estimation (see

Currin et al. [15]). Not only have Kriging interpolation functions been shown to provide

better fitting models in multi-dimensional domains than polynomial interpolants, they of-

ten exhibit fewer oscillations, which can cause polynomial fitting techniques to fail.

As in kernel regression, Kriging involves the approximation of the mean response curve

f in the regression relationship
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Y (Xi) = f(Xi) + ε(Xi) (4.6)

where i = 1, .., n, the Xi are design vectors, Yi are the averaged responses of the associated

Xi, and ε is the random error. However, while kernel regression treats each error term as

an independent variable, Kriging considers each error to be a dependent random variable

with a known distribution and zero mean. By assuming the random error follows a known

distribution, Kriging is able to model the covariance of the error function. The covariance

is modeled as a second-order stationary process; i.e., the means and variances are constants

and the covariances of the outputs depend only on the distance between the inputs. For

example, a general covariance function can be given as

Cov[f(Xi), f(Xj)] = σ2f exp(−θ ‖xi − xj‖) (4.7)

where σ2f is a scalar process variance, i and j = 1, .., n, with i �= j, and θ is a weighting

factor for the influence of surrounding data points.

Because Kriging is based on a regression model, Equation (4.6) can be more explicitly

expressed as

Y (Xi) =
∑k

j=1
βjfj(Xi) + ε(Xi), i = 1, .., n (4.8)

where fj are basis functions and βj are the corresponding coefficients. The use of basis

functions allows Kriging to assume various polynomial forms which provide more flexibility

than the default linear function. Thus, if information on the underlying response surface

shape is known, then the Kriging model can be tailored to take advantage of this additional

knowledge.
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Although Kriging allows great flexibility in the selection of the estimation function, the

model parameters have to be determined before the Kriging model can be used to produce

response estimates. Similar to kernel regression, these parameters are also optimized

separately.

4.2 Surrogate Sampling Design

To garner useful information from the surrogate models, a structured approach must

be taken in the selection of points which are used in the building of the surrogates. The

following subsections discuss the methods employed in this research to ensure the surrogates

properly balance the benefit of the additional information provided with the increase of

function evaluations incurred by the optimization algorithm.

4.2.1 Latin Hypercube Sampling

In order to provide a good global search of the feasible region, surrogate models require

response data over the entire feasible region to properly approximate the underlying surface.

A simple and popular experimental design technique to provide such data is Latin hypercube

sampling (LHS). Although LHS was invented for deterministic simulation models (Mckay

et al. [40]), it is a useful tool for generating a space-filling set of points from which to

construct an initial surrogate.

In traditional LHS, each variable domain of the feasible region is divided into n intervals

of equal length. Then, design points are randomly placed within each interval so that, for

each variable, a design point appears exactly once in each interval. This is convenient for

pattern search, since the feasible region is already equally divided by the mesh, and thus

the design points must simply be distributed properly. If the number of desired design

points p equals the number of intervals n of the LHS design, then the design is said to be

of strength one.
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Since the global quality of the surrogate is initially determined by the LHS, designs of

strength two (p = 2n) are used in this research to provide an initial search of the feasible

region that is denser than a traditional strength one design (p = n). Figure 4.1 illustrates

LHS samples of strengths one and two for a two-dimensional design space. Since locating

and moving to areas of possible improvement is important early on in the algorithm, the

first ������ step performed in this research will always be LHS.

Strength 1 Strength 2

x1
x1

x2x2

Figure 4.1. Examples of Latin Hypercube Samples of Strengths 1 and 2.

4.2.2 The Merit Function

Once the surrogate function is built, it can be utilized within the pattern search frame-

work as an inexpensive means to generate candidate points from the mesh Mk. After the

candidate points are evaluated, the points are added as design sites for the surrogate to

enhance the accuracy of the surrogate function. A straightforward rule for selecting can-

didate points is simply to minimize f̂ on the mesh directly. However, using this greedy

approach may inhibit the overall accuracy of the surrogate function because the trial points

tend to cluster in a particular region of the design space (Sriver [55]).
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Instead of directly estimating the response by the estimator function f̂(x), Sriver

incorporated a bi-objective merit function (see Torczon and Trosset [59]) of the form

m(x) = f̂(x)− λd(x) (4.9)

where d(x) = min
j
‖x− xj‖ is the distance from x to the nearest previously sampled design

site and λ ≥ 0 determines the relative weight placed on the space-filling objective for the

selection of candidate points. By initially setting the λ parameter as a multiple of the mean

difference between initial design responses and decaying the parameter after each ������

step, the merit function approach forces the searches to perform an early examination

of space-filling points. The impact of the merit function approach will be examined in

computational testing.

4.2.3 The Trust Region

An additional embellishment on the standard MGPS-RS algorithm that Sriver [55]

performed was the use of a trust region of the surrogate model. Since kernel regression

methods are interpolatory, estimates of points lying outside the sampling region approach

a value equal to the mean response of the nearest design site. Thus, the combination of a

kernel regression estimator with a large bandwidth and the merit function approach would

constantly force the selection of points that were distant from the current design points.

To prevent this occurrence, Sriver incorporated a "trust region" and set its radius

to one-half of the maximum Euclidean distance between any pair of initial design sites.

During the ������ step, the search is restricted to a ball centered at the starting point

with the prescribed radius. The impact of this option on the quality of the surrogate will

also be examined in computational testing.
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4.3 Implementation Considerations

In addition to the general considerations presented in Section 3.6, the use of NOMADm

as an implementation of the modified algorithm introduces specific encoding considerations.

This section discusses the specific issues presented by and resulting decisions made from

the use of NOMADm.

In order to allow the user flexibility during the local neighborhood search, NOMADm

offers a wide range of direction sets, including an option of a user-defined set, to be used in

the generation of the ��		 set. This research considered the use of the standard maximal

set, given by [I;−I], to ensure a rich local search was performed.

As noted by Dennis and Schnabel [19], an important consideration in many engineering

problems is the issue of variable scaling. Scaling refers to the transformation of variables

so that they will have approximately the same range. For badly scaled problems, the

disparate ranges of the variables have the effect of assigning unequal weighting factors to

the problem variables. In extreme cases, the altering of problem variable importance can

cause variables to be virtually ignored by the optimization problem. In order to maintain

the relative importance of variables, NOMADm provides the option of logarithmic scaling

of directions, rather than direct variable transformations. By calculating the weighting

factors for each variable, the directions of the ��		 set can be properly rescaled within

each variable range. The result of logarithmic rescaling is that the descent directions will

take into consideration the ranges of the variables. In this research, a base-2 logarithm

transformation was used since it will rescale the variables more frequently than a base-10

logarithm.

In the presence of constraints, consideration must be given to the evaluation of infea-

sible points. Since NOMADm was designed to handle nonlinear constraints through the
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use of a filter, the code already determines if potential iterates will lie within the defined

constraints. Since infeasible points may improve the accuracy of the surrogate, infeasible

points were evaluated but not allowed to replace the incumbent. Therefore, when the ��		

set contains directions that would make a constraint active, directions which conform to

the boundary were added to the ��		 set and the entire ��		 set was evaluated. Addition-

ally, when stochastic simulations are used, the user-defined number of initial replications,

s0 from Equation (3.11), of infeasible points was taken. Since the goal of the optimization

is to locate an improved feasible solution, the user-defined minimal number of replications

was used for infeasible points to provide some variance reduction while preserving function

evaluations for the overall algorithm.

When surrogates are used during the ������ step, the user must decide which iterates

should be included in the construction of the surrogate. Although the inclusion of more

(or all) design points may improve the accuracy of the surrogate, constructing and/or

evaluating a surrogate with a large number of design points can become prohibitive in

terms of computing speed or available memory. In an effort to balance these two concerns,

only search points and improved mesh points were used during the surrogate construction;

all other previously sampled points are ignored.

Finally, for mixed variable problems, MGPS typically searches only those sections of

the mesh associated with the categorical setting containing the incumbent. However, the

flexibility of the ������ step allows the search of any section of the mesh. For exam-

ple, for each possible categorical setting, a surrogate can be built during initialization in

preparation for future searches, as in Sriver’s implementation [55]. Since this may require

a significant number of function evaluations for MVPs with many possible categorical set-

ting combinations, an alternative approach is to build surrogates only as they are needed.
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In this research, the result of the ��		 step is used in determining which of the discrete

neighbors are to be polled. The surrogates are only constructed for sections of the mesh

that are associated with the categorical settings of discrete neighbors that trigger extended

polling. Thus, surrogates are constructed only for the sections of the mesh in which there

is evidence that an improved mesh point may lie.

4.4 Design of Investigation

Sequential Selection with Memory and the modified MGPS algorithm were imple-

mented in NOMADm to extend the code to stochastic simulation problems and to improve

the computational efficiency of the underlying algorithm. A computational evaluation

was conducted using the new code to assess the performance of the various combinations

of surrogate strategies presented in this chapter. This evaluation consisted of a series of

experiments applied to three standardized test problems from Schittkowski [52].

Since the modified algorithm is a generalization of the MGPS-RS and the convergence

theory is not changed, the focus of the computational testing is the use of standardized tests

to compare surrogate designs. The objective of this comparative testing is to determine if,

under similar termination criteria, the use of surrogates can be shown to provide a reduction

in the number of function evaluations and an improved solution, where the quality of a

solution is measured by its proximity to the optimal solution and the true response value

at the terminating point. In order to ensure that the comparative results were based on

non-confounded factors, a full factorial design was used in this testing where the factors

evaluated included the type of surrogate (either Nadaraya-Watson or Kriging), the use of a

merit function, and the use of a trust region. After encoding and running the deterministic

test problems, stochastic versions were constructed for testing by imbuing the response with

a noise signal that follows a standard normal distribution, which can be represented as
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F (x) = f(x) +N(0, 1) (4.10)

where F (x) is the response of the simulation and f(x) is the noise-free response of the

system.

In order to represent a cross-section of standard test problems, the following three

nonlinear unconstrained problems were selected.

Problem 1 (Powell function)

General Polynomial: f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4

with an initial point x0 = (3,−1, 0, 1)T ,

initial objective function value f(x0) = 235,

optimal point x∗ = (0, 0, 0, 0)T ,

and optimal objective function value f(x∗) = 0

Problem 2

Quadratic: f(x) = xTQx where Qij =
1

i+j−1 , i, j = 1, 2, 3, 4 (4×4 Hilbert Matrix)

with an initial point: x = (−4,−2,−1.333,−1)T ,

initial objective function value f(x0) = 33.965,

optimal point x∗ = (0, 0, 0, 0)T ,

and optimal objective function value f(x∗) = 0

Problem 3 (Rosenbrock function)

Sum of Squares: f(x) = 100(x2 − x21)
2 + (1− x1)

2 + 100(x3 − x22)
2 + (1− x2)

2

+100(x4 − x23)
2 + (1− x3)2

with an initial point: x = (−1.2, 1,−1.2, 1)T ,

initial objective function value f(x0) = 532.4,

optimal point x∗ = (1, 1, 1, 1)T ,

79



and optimal objective function value f(x∗) = 0

4.4.1 Deterministic Runs

To characterize the general impact the use of the selected surrogates would have on the

test problems, the results of using no surrogates were compared to each of the surrogates of

this study (Nadaraya-Watson and Kriging estimators) without the use of a trust region or

merit function approach. For each of the runs, the noise was removed from the response

so that any difference found would be attributable to the surrogate used. Although the

solution becomes deterministic in the no-surrogate case, the use of the initial LHS procedure

produces randomness in the results when surrogates are employed. Thus, in addition to

the use of a terminating criteria of either 5000 function evaluations or ∆k ≤ 0.0001, 100

replications of each test problems were taken whenever the Nadaraya-Watson or Kriging

estimators were used.

The results of these test runs show a mild improvement when surrogates are used.

Specifically, reductions were observed in the distance from the true minimizer and in true

objective function value of the final iteration. The number of function evaluations was

also lower when surrogates were used. Replications corresponding to surrogate runs with a

number of function evaluations less than the median are correlated with runs that provide

reductions in the normed distance and true function evaluation. Therefore, the surrogates

provide an overall improvement when used on these test problems. Details are provided

in Appendix A.1.

4.4.2 Pilot Study

Since the optimization algorithm is dependent on appropriately selected R&S parame-

ters to produce useful estimates of the true surface response, a pilot study was performed

on each of the problems to determine the R&S parameters used in the main test runs. The
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initial estimates for the proper R&S parameters are taken from the work of Sriver in [55].

For the pilot study, the number of initial samples was fixed at 5 and the decay rate for both

the alpha and indifference were varied identically starting at 0.95. The other parameters

investigated for change were the initial alpha and indifference zone parameters which were

0.8 and 100, respectively. The pilot study considered alternative settings for alpha of 0.70,

indifference zone of 80, and decay parameters of 0.90.

By conducting a pilot study, common R&S parameter settings for the problems tested

could be found that provide an appropriate baseline convergence to the known optimal

point, where the baseline refers to the implementation without surrogates. Establishing

a baseline, the relative worth of using a particular surrogate can be directly judged in

comparative analysis with the runs without surrogates. Thus, the full factorial pilot study

was run without the use of surrogates.

Using one hundred replications of each design setting, the quality of the R&S parame-

ter settings was judged by the distance from the terminating solution to the true known

optimum. One should note that the quality of the solution was not judged by the result-

ing response at the terminating solution as the response itself is stochastic and is related

to the distance to the optimum. The pilot study used terminating criteria of either 5000

function evaluations or ∆k ≤ 0.0001. Since the underlying algorithm produced stochastic

results at each iteration, shown in Appendix A.2, the resulting distribution of the termi-

nating solution was of an unknown analytic form.

The pilot run results were initially analyzed by graphical tools to provide a basic char-

acterization of the underlying probability distributions. Since most standard statistical

tools for comparing distributions rely on underlying normal distributions, an initial charac-

terization of the distributional form is important in justifying the use of parametric tools.
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If the distributions are not normal or cannot justifiably be transformed to a normal distri-

bution, then the distribution must be compared using nonparametric tools, many of which

have the same power as parametric methods. The outlier box plot and quantile box plot of

the distributions shown in Appendix A.2 provide sufficient evidence that the distributions

are not normal; thus, nonparametric methods were used.

For the pilot study results, the van der Waerden test was performed. This test is used

to detect whether at least two of k sample populations come from different distributions (see

Sheskin [53]). By transforming the rank-orders into a set of standard deviations derived

from the standard normal distribution, the van der Waerden test provides statistical power

generally equal to that of the analogous parametric test. The null hypothesis is that the

samples are derived from the same underlying distribution, and its rejection, based on the

given level of significance, indicates that there is enough statistical evidence to conclude

that the different R&S parameters produce different underlying distributions. Thus, even

if transformations were used to normalize the distributions, the R&S parameters impact

the quality of the terminating solution. Additionally, the quality of the parameter settings

was measured by the median, as opposed to the mean. Because each distribution may

contain extreme values, as indicated by the outlier box plots, the mean of the distribution

can be skewed. Since the median is not influenced by extreme observations, it was chosen

as a more appropriate measure of central tendency.

The results of the pilot runs, shown in Appendix A.2, reference the R&S parameter

design by concatenating the indifference zone, the indifference rate of decay, the alpha level,

and the alpha rate of decay. Thus, the R&S settings suggested by Sriver can be represented

as 100958095 for an indifference zone of 100, alpha level of 0.80, and decay rates of 0.95.

From the results, R&S parameter settings of 100958095, 100908090, and 75907090 tended
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to produce favorable distance results. Therefore, these initial conditions settings were used

in the computational testing of the main run.

4.4.3 Main Runs

Since the purpose of the computational testing is to find if, starting under similar con-

ditions, the use of surrogates can be shown to provide an improved solution, the baseline

of no surrogates is accompanied by each of the surrogate design combinations for the main

run. The quality of solution is judged by both the proximity to the optimal solution and

the true objective function value at termination, where the main run used terminating cri-

teria of either 100,000 function evaluations or ∆k ≤ 0.0001. Just as in the pilot run, box

plots of the distributions are used to initially characterize each of the distributions. The

comparative analysis is then performed both on the grouped results of all three R&S pa-

rameter settings and for each R&S parameter individually. When the box plots for two

or more distributions indicate that there may be similarity between the distributions, ei-

ther the Wilcoxon rank-sum procedure or the Kruskal-Wallis procedure is performed. The

Wilcoxon rank-sum procedure tests the hypothesis that the two sample populations are

different and the Kruskal-Wallis procedure can be considered an extension of the Wilcoxon

procedure that tests whether at least two of k sample populations are different. These

procedures test the null hypothesis of equal distributions through the comparison of trans-

formed rank values for each distribution. Again, the median is used in measuring the

overall quality of the solution for each of the distributions.

4.5 Computational Results

The results of the main runs are shown in Appendix A.3, where the abbreviations NW

and Krig are used to identify the use of the Nadaraya-Watson and Kriging surrogates and

the use of a local trust region and a merit function are represented by a boolean indicator;
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e.g., KrigLoc1Mer0 represents the use of a Kriging surrogate with a local trust region but

not a merit function. Unlike the deterministic runs, the results indicate that the use of

surrogates in the present implementation does not provide improvement in convergence to a

local optimum and the number of function evaluations does not indicate that the surrogates

would provide an overall improvement to the terminating solution. In fact, the number

of function evaluations for the surrogate runs exceeded the no-surrogate runs without any

indication of an improved response. However, the reason for this failure and the differences

in competing surrogate designs’ performances provide enough information to warrant some

general discussion.

4.5.1 Main Run Results

At first, failure of the surrogates to provide an improved response, as demonstrated by

the deterministic runs, was unexpected. Since the surrogates actively use prior information

from the cache to generate trial points, it was assumed that the surrogate runs would

demonstrate an improved terminating solution and a reduction in the number of function

evaluations. However, the use of decaying R&S parameters have the affect of improving

the cache estimates over time and, other than the incumbent, are never updated after the

initial sampling. Thus, the surrogates are autocorrelated with their occurrence within the

cache. As such, the surrogate is constructed from points with various levels of confidence

due to the different sampling variances. The resulting surrogate is such a poor fit for the

true surface that the generation of trial points decreases the computational efficiency of the

algorithm.

The results also indicate that the use of a trust region and a merit function can impede

the algorithmic progress to a stationary point when there is a single optimum. The sur-

rogate design using the Kriging estimator with a combined trust region and merit function
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approach (KrigLoc1Mer1) provided the worst solution across each of the test problems, and

the surrogate design using the Nadaraya-Watson estimator with a combined trust region

and merit function approach (NWLoc1Mer1) frequently performed worse than the other

Nadaraya-Watson based designs. Since the use of a merit function forces the search to be-

come more space-filling, the associated test runs perform a more global search than other

test runs. When multiple local optima are present, the purpose of the optimization may

be to find an area that simply improves the current solution; thus a global search may

be appropriate. However, in this research, each of the test functions contained a single

global optimum. By rigorously searching the feasible region, the combined trust region

and merit function approach requires additional function evaluations to ensure alternative

areas of improvement were not overlooked during the convergence to a stationary point.

Thus, when compared to test runs that perform more local searches, searches that used the

combined trust region and merit function approach performed poorly. However, if the test

problems had contained many local optima, it is likely that the combined approach would

have performed well.

Additionally, there appears to be a strong correlation between competing sets of sur-

rogate designs. In each of the test problems, when a local trust region was not used,

the Nadaraya-Watson estimator performed similarly regardless if the merit function was

employed or not. However, when the Kriging estimator was employed, the terminating

solutions for designs where a merit function was not employed were similar to each other,

regardless if the local merit region was used. Since this similarity was apparent from the

box plots, both of these cases were statistically tested for equivalence of underlying dis-

tributional form. As shown in Appendix A.3, there is not enough statistical evidence to

reject the null hypothesis of equivalent underlying distributions for these surrogate designs.
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These observations demonstrate the interpolatory nature of each of these surrogates. Since

the Gaussian kernel used for the Nadaraya-Watson has long tails, the estimates outside the

sampling region may have been tending to distant points. Also, since the optimal was cen-

trally located within the domain of the problem, the Kriging estimator may have ensured

that a local trust region was maintained by modeling the covariance as Gaussian distribu-

tion.

Computational testing demonstrated that using a cache of mean responses, calculated

from previously evaluated iterate responses, can have a large influence on the quality of the

terminating solution and the number of function evaluations. As a general result of this

research, in cases where the quality of iterate response estimation improves as the algorithm

progresses, the use of previous iterate responses from a cache can negatively impact the

performance and terminating solution of an optimization algorithm. In this research, the

use of previously evaluated iterates impacts both the R&S procedure used for solving the

iterate selection subproblem and the quality of the surrogate used for locating areas of

improved response. To demonstrate that the use of the cache negatively impacted the

algorithm, additional testing was performed by modifying the R&S procedure as discussed

in the following section.

4.5.2 R&S Modification Results

The unmodified R&S procedure used for the main runs maintained previously stored

values for the current incumbent for future R&S comparisons. Since the quality of iter-

ate estimation improves asymptotically, an initial bias of low functional responses are built

into the cache of the incumbent. If the initial estimates for the incumbent are significantly

below the true response value, the incumbent may not be replaced by an iterate whose true

response is lower than the incumbent. Thus, the algorithm is likely to produce poor termi-
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nating solutions. In order to address the issue, the memory portion (the storage of previ-

ous response evaluations for the incumbent) was removed from the R&S procedure and the

main runs were redone with the modified code. The removal of the incumbent memory for

the R&S procedure enables more accurate response estimates of the incumbent by requiring

it to be re-estimated with the current R&S parameter setting. Thus, response estimation

of the incumbent is improved by requiring additional function evaluations. From the com-

parison shown in Appendix A.4, the removal of former incumbent response data improved

both observed and true responses for the terminating solution. Since the underlying al-

gorithm is dependent on accurate incumbent information, bias in the sample estimation of

the incumbent not only reduces the accuracy of the incumbent response, but also reduces

the quality of the terminating solution. By using the modified R&S procedure, the termi-

nating solutions, shown in Appendix A.5, demonstrate improvement over the unmodified

R&S procedure results of Appendix A.3. Therefore, the initial savings in functional evalu-

ations provided by the storage of the incumbent value has been shown to be an ineffective

means of improving the terminating solution for stochastic responses for the optimization

algorithm used in this research.

The use of previously evaluated iterates also impacts the quality of the surrogate used

during a search. Although the surrogates are constructed during each ������ step, which

has the affect of recalibrating the surrogate prior to its use, the design iterates used to

build the surrogate are not recalibrated to ensure homogeneity of the sample variances.

As noted in Section 3.6, since the R&S parameters are initially set loosely and are decayed

as the algorithm progresses, responses selected from the cache may be inaccurate and

can have large differences in sample variances. Thus, the surrogate may provide a poor

fit to the true underlying surface. As a result, the mild improvement through the use
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of surrogates suggested by the deterministic test problems runs is never obtained by the

stochastic versions of the test problems.

4.6 Summary

This chapter demonstrated the applicability of the optimization algorithm presented

in this research under various surrogate designs by comparing the quality of terminating

solutions and number of function evaluations on a set of standard test problems. By an-

alyzing the results of the computational runs, some general conclusions about the experi-

ment design and the modified algorithm could be made. Issues raised by the analysis are

discussed in the next chapter in the context of future work
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Chapter 5 - Conclusions and Recommendations

This research effort, relating a generalized pattern search for mixed variable domains

and ranking and selection procedures, provides an algorithm that can efficiently solve

simulation-based optimization problems of "black box" systems. Through modification

of the underlying MGPS algorithm, NOMADm provides enhanced support of surrogates

and is now applicable to the optimization of mixed variable stochastic simulation problems

with linear constraints.

5.1 Future Research

Comparative testing performed in this research has shown the relative importance of

the R&S parameters, the selection of surrogates, and the surrogate approaches. As with

many research efforts, the observations open the door for more discoveries in the use of

surrogates, with and without R&S procedures, for simulation-based optimization. The

following sections present recommendations for further research that could serve to enhance

the performance of mixed variable programming problem solution techniques.

5.1.1 Nonlinear Constraints

As noted in Section 4.3, the sampling rule for infeasible points is based simply on

establishing a minimal level of confidence on the response. Since infeasible points are used

as design points for the construction of a surrogate, a moderate level of confidence should

be maintained for the responses, which the use of minimal sampling may not provide.

However, NOMADm was originally designed for optimization of nonlinearly constrained

mixed variable problems through a filter approach. Since the estimation of responses are

directly used as a filter criteria, a new method for controlling the sampling error of infeasible

iterates will have to be considered in order to appropriately apply NOMADm to nonlinear

problems.
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For filter algorithms, the goal is to minimize two functions, the objective f and a

continuous aggregate constraint violation function h, where h(x) ≥ 0 if and only if x is

feasible. A filter is a set of non-dominated points with respect to f and h (see Audet and

Dennis [8]), and steps are considered successful whenever improvement in either function

is found. By polling around the least infeasible points in the filter or the best feasible

point, the goal is to improve either the least infeasible point or the best feasible point.

If the minimizer lies on the boundary of the feasible region, a subsequence of iterates

that approach the minimizer can be generated without requiring the polling directions to

conform to the boundary.

The filter approach can be employed quickly for deterministic simulations since the

parameters for each iterate, whether feasible or infeasible, are known. However, the use of

a filter for stochastic simulation requires a modification to the general approach because

the objective function is only available stochastically and is typically reduced by repeated

sampling. A possible approach for controlling the sampling error is the use of the current

R&S parameters of the feasible iterates to drive the sampling requirement for infeasible

points. By the assumption of normality in the error terms, the current alpha level used

in the R&S procedures for the feasible points could be used to determine the number

of replications required of the infeasible points to establish a given level of significance.

Additionally, the handling of stochastic constraints might be addressed by the use of a

filter.

Another approach to the handling of nonlinear constraints is to extend the MADS al-

gorithm to stochastic MVP problems. As noted in Section 2.4.2, MADS is a generalization

of GPS for handling nonlinear constraints that provides stronger convergence results than

MGPS. It does so by generating a dense set of mesh directions in the limit. Poll directions
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are chosen at each iteration from a ever increasing set of mesh directions. The develop-

ment of such a class of algorithms would allow the solution of a previously unsolvable class

of problem.

5.1.2 R&S Modifications

As part of the convergence theory used in MGPS-RS, Sriver [55] demonstrated that

the use of decay parameters in the R&S procedure results in asymptotic behavior of the al-

gorithm, where the statistical significance of the selected iterate improves as the algorithm

progresses. Therefore, the quality of visited solutions varies as the algorithm progresses.

Since surrogates are built from past responses, the use of a nonhomogeneous pool of so-

lutions can lead to a poor approximation of the true response surface. A method for

improving the surrogates is to resample on a subset of previously visited design points and

replicate the points until the desired level of homogeneity is achieved. The resampling

could be performed after a fixed number of R&S procedures (which is equivalent to setting

fixed alpha level thresholds) or based on the pooled sample variance of the stored responses

(resampling based on the individual versus pooled variance).

Another area of current research involves balancing the cost of sampling with switching.

R&S procedures that use fully sequential sampling, such as the one used in this research,

require repeated switching between different model scenarios. Since the computational

overhead of switching may be expensive, new methods are being developed (see Hong and

Nelson [27]) that reduce the number of required switches while maintaining the required

level of significance.

5.1.3 Surrogate Modifications

As shown in Equation (4.6), the Kriging model can be tailored by adding additional

problem knowledge to the selection of basis functions. In this research the basis functions
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were set to be linear functions, since no assumptions, other than smoothness, of the true

surface were made. In true engineering problems however, additional knowledge of the

problem is usually available. Through the use of alternative basis functions, the Kriging

model should be able to more accurately approximate the surface. An area of future

research is to develop a Kriging model that can change as the pattern search algorithm

progresses as additional information is acquired.

5.2 Summary

Generalized pattern search provides an effective method to solve very difficult opti-

mization problems, e.g. mixed variable programming. This research has addressed the

computational efficiency for optimizing simulated systems. The modifications to the mixed

variable generalized pattern search were described and implemented within the NOMADm

software package. The modified algorithm was tested using three stochastic test problems.

Overall results were unfavorable due to the poor fit of the surrogates and lead to sample

variance reduction as a suggestion for future work.
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APPENDIX A - Supporting Data Summary

A.1 Deterministic Run Data Summary

This appendix provides the details of the initial deterministic response comparison

used to establish the relative quality of solution that surrogates provide when there is no

noise in the response signal. For each of the test problems, the box plot and quantiles for

the performance measurements are presented.

Test Problem 1
Normed Distance                                             True Function Evaluation

Cumulative Distribution Functions

Krig

NW
None

Level
0.000018

0.000026
0.000026

10%
 0.00002

0.000026
0.000026

25%
0.000023

0.000026
0.000026

Median
0.000025

0.000026
0.000026

75%
0.000027

0.000026
0.000026

90%

Quantiles

Krig

NW
None

Level
0.065581

0.072333
0.072333

10%
0.068409

0.072333
0.072333

25%
0.070448

0.072333
0.072333

Median
0.071872

0.072333
0.072333

75%
  0.0732

0.072333
0.072333

90%

Quantiles
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Test Problem 2

Normed Distance                                             True Function Evaluation

Cumulative Distribution Functions

Krig
NW

None

Level

0.983785
0.500934

0.839932

10%

1.737309
1.599949

0.839932

25%

 3.65214
4.562427

0.839932

Median

5.745399
7.771205

0.839932

75%

10.06253
11.02117

0.839932

90%

Quantiles

Krig
NW

None

Level

0.000099
0.000026

0.000072

10%

0.000303
0.000248

0.000072

25%

0.001352
0.002095

0.000072

Median

 0.00337
0.006105

0.000072

75%

0.010395
0.012419

0.000072

90%

Quantiles
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Test Problem 3

Normed Distance                                             True Function Evaluation

Cumulative Distribution Functions

Krig

NW
None

Level
0.058642

0.072102
0.072102

10%
0.072403

0.072102
0.072102

25%
0.072403

0.072102
0.072102

Median
0.117245

0.072102
0.072102

75%
0.182248

0.072102
0.072102

90%

Quantiles

Krig

NW
None

Level
 0.00087

0.001324
0.001324

10%
0.001339

0.001324
0.001324

25%
0.001339

0.001324
0.001324

Median
0.003587

0.001324
0.001324

75%
0.008814

0.001324
0.001324

90%

Quantiles
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Krig

NW

None

Level

    2230

    3247

    3285

10%

    2901

    3297

    3285

25%

    3079

    3297

    3285

Median

 3311.75

    3298

    3285

75%

  3442.9

    3298

    3285

90%

Quantiles

Krig

NW
None

Level

    5000

    5000
    5000

10%

    5001

    5001
    5000

25%

  5002.5

    5003
    5000

Median

    5005

    5005
    5000

75%

    5006

    5006
    5000

90%

Quantiles

Krig
NW

None

Level

   802.6
    5001

    5005

10%

    5000
    5001

    5005

25%

    5004
    5001

    5005

Median

    5005
    5002

    5005

75%

    5005
    5002

    5005

90%

Quantiles

Test Problem 3

Test Problem 2

Test Problem 1

Number of Function Evaluations
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A.2 Pilot Study Data Summary

This appendix provides the details of the results of the pilot study used to establish

the ranking and selection parameters for the main computational runs. As noted in Sec-

tion 4.4, the distance to the optimal point was used as the quality measure for each of the

R&S parameter settings. For each of the test problems, the box plot and statistical test

are first presented and supported by the following individual R&S parameter histograms

and descriptive statistics. The labeling of each R&S procedure design is provided by the

concatenation of the indifference zone parameter, the indifference zone decay rate, the al-

pha level, and the alpha decay parameter, e.g. 100957095 indicates an initial indifference

zone of 100, alpha level of 0.70, and common decay parameters of 0.95.
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Test Problem 1

Normed Distance                                            Statistical Evaluation

R&S Design 75907090

R&S Design 75908090

75907090
75908090

75957095

75958095
100907090
100908090

100957095
100958095

Level
   400
   400

   400

   400
   400
   400

   400
   400

Count
 -28.8684
  59.0344

   1.4384

  11.8190
  40.9612
 -34.2081

 -10.2777
 -39.8987

Score Sum
-0.07217
 0.14759

 0.00360

 0.02955
 0.10240
-0.08552

-0.02569
-0.09975

Score Mean
 -1.546
  3.162

  0.077

  0.633
  2.194
 -1.832

 -0.551
 -2.137

(Mean-Mean0)/Std0

  22.6091
ChiSquare

     7
DF

0.0020
Prob>ChiSq

1-way Test, ChiSquare Approximation

Van der Waerden Test (Normal Quantiles)
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R&S Design 75957095

R&S Design 75958095

R&S Design 100907090
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R&S Design 100908090

R&S Design 100957095

R&S Design 100958095
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Normed Distance                                            Statistical Evaluation

Test Problem 2

R&S Design 75907090

R&S Design 75908090

75907090
75908090

75957095

75958095
100907090
100908090
100957095

100958095

Level
   400
   400

   400

   400
   400
   400
   400

   400

Count
 -23.2475
  43.8949

  32.7966

  38.3050
  15.8731
 -78.3039
  -9.1368

 -20.1814

Score Sum
-0.05812
 0.10974

 0.08199

 0.09576
 0.03968
-0.19576
-0.02284

-0.05045

Score Mean
 -1.245
  2.351

  1.757

  2.052
  0.850
 -4.194
 -0.489

 -1.081

(Mean-Mean0)/Std0

  29.8357
ChiSquare

     7
DF

0.0001
Prob>ChiSq

1-way Test, ChiSquare Approximation

Van der Waerden Test (Normal Quantiles)
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R&S Design 75957095

R&S Design 75958095

R&S Design 100907090
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R&S Design 100908090

R&S Design 100957095

R&S Design 100958095
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Normed Distance                                            Statistical Evaluation

Test Problem 3

R&S Design 75907090

R&S Design 75908090

75907090
75908090

75957095

75958095
100907090
100908090
100957095

100958095

Level
   400
   400

   400

   400
   400
   400
   400

   400

Count
  -9.6381
  41.4832

  38.1687

   1.1646
  20.0106
 -37.3491
 -27.1663

 -26.6736

Score Sum
-0.02410
 0.10371

 0.09542

 0.00291
 0.05003
-0.09337
-0.06792

-0.06668

Score Mean
 -0.516
  2.222

  2.044

  0.062
  1.072
 -2.001
 -1.455

 -1.429

(Mean-Mean0)/Std0

  16.3606
ChiSquare

     7
DF

0.0220
Prob>ChiSq

1-way Test, ChiSquare Approximation

Van der Waerden Test (Normal Quantiles)
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R&S Design 75957095

R&S Design 75958095

R&S Design 100907090
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R&S Design 100908090

R&S Design 100957095

R&S Design 100958095
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A.3 Main Run Data Summary

This appendix provides the details of the results of the main run used to determine if

the use of surrogates improves the quality of the terminating solution. As noted in Section

4.4, the distance to the optimal point was used as the quality measure for each design set-

ting. For each of the test problems, the box plot and statistical test are first presented and

supported by the following individual design setting histograms and descriptive statistics.

The labeling of each surrogate design is provided by the concatenation of the surrogate

used with boolean indicators for the use of a local trust region and merit function, thus,

KrigLoc1Mer0 represents the use of a Kriging surrogate with a local trust region but not a

merit function.
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Test Problem 1

Combined Norm                                            Statistical Evaluation

R&S Design 75907090                               R&S Design 100908090 

R&S Design 100958095
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KrigLoc0Mer0 and KrigLoc1Mer0 Comparison

Normed Distance                                            Statistical Evaluation

Test Problem 1

True Objective Function                                         Statistical Evaluation

KrigLoc0Mer0

KrigLoc1Mer0

Level
   300

   300

Count
    92877

    87423

Score Sum
 309.590

 291.410

Score Mean
  1.284

 -1.284

(Mean-Mean0)/Std0

    87423
S

-1.28421
Z

0.1991
Prob>|Z|

2-Sample Test, Normal Approximation

   1.6498
ChiSquare

     1
DF

0.1990
Prob>ChiSq

1-way Test, ChiSquare Approximation

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

KrigLoc0Mer0
KrigLoc1Mer0

Level
   300
   300

Count
  92157.5
  88142.5

Score Sum
 307.192
 293.808

Score Mean
  0.945
 -0.945

(Mean-Mean0)/Std0

  88142.5
S

-0.94532
Z

0.3445
Prob>|Z|

2-Sample Test, Normal Approximation

   0.8941

ChiSquare

     1

DF

0.3444

Prob>ChiSq

1-way Test, ChiSquare Approximation

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)
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NWLoc0Mer0, NWLoc0Mer1, and None Comparison

Normed Distance                                            Statistical Evaluation

Test Problem 1

True Objective Function                                         Statistical Evaluation

NWLoc0Mer0

NWLoc0Mer1
None

Level

   300

   300
   300

Count

 136238.5

 141824.5
   127387

Score Sum

 454.128

 472.748
 424.623

Score Mean

  0.296

  1.815
 -2.112

(Mean-Mean0)/Std0

   5.2287

ChiSquare

     2

DF

0.0732

Prob>ChiSq

1-way Test, ChiSquare Approximation

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

NWLoc0Mer0
NWLoc0Mer1
None

Level

   300
   300
   300

Count

 135851.5
 138700.5
   130898

Score Sum

 452.838
 462.335
 436.327

Score Mean

  0.191
  0.966
 -1.156

(Mean-Mean0)/Std0

   1.5379
ChiSquare

     2
DF

0.4635
Prob>ChiSq

1-way Test, ChiSquare Approximation

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)
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Combined Norm                                            Statistical Evaluation

Test Problem 2

R&S Design 75907090                               R&S Design 100908090 

R&S Design 100958095

KrigLoc0Mer0
KrigLoc0Mer1
KrigLoc1Mer0
KrigLoc1Mer1

NWLoc0Mer0
NWLoc0Mer1
NWLoc1Mer0

NWLoc1Mer1
None

Level

2.873339
 2.63661

2.805404
2.466074

2.668076
2.260656
2.605152

2.057595
2.196076

10%

4.013382
3.689953
 3.99156
4.214961

4.083172
3.273001
3.883431

3.151391
2.605398

25%

5.779123
5.551306
5.802168
5.947904

5.555668
 5.27244
5.944353

5.018045
3.124865

Median

7.959836
8.279745
7.982192
9.121276

 8.00502
7.421511
7.886601

6.970823
3.764776

75%

10.52179
10.51901
 9.77672
12.12097

11.52101
9.516558
10.42115

9.597397
4.357175

90%

Quantiles
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Test Problem 2

True Objective Function                                         Statistical Evaluation

KrigLoc0Mer0

KrigLoc1Mer0

Level
   300

   300

Count
    90609

    89691

Score Sum
 302.030

 298.970

Score Mean
  0.216

 -0.216

(Mean-Mean0)/Std0

    89691
S

-0.21596
Z

0.8290
Prob>|Z|

2-Sample Test, Normal Approximation

   0.0467
ChiSquare

     1
DF

0.8288
Prob>ChiSq

1-way Test, ChiSquare Approximation

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

KrigLoc0Mer0
KrigLoc1Mer0

Level
   300
   300

Count
    90776
    89524

Score Sum
 302.587
 298.413

Score Mean
  0.295
 -0.295

(Mean-Mean0)/Std0

    89524
S

-0.29462
Z

0.7683
Prob>|Z|

2-Sample Test, Normal Approximation

   0.0869

ChiSquare

     1

DF

0.7681

Prob>ChiSq

1-way Test, ChiSquare Approximation

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

KrigLoc0Mer0 and KrigLoc1Mer0 Comparison

Normed Distance                                            Statistical Evaluation
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NWLoc0Mer0 and NWLoc0Mer1 Comparison

Normed Distance                                            Statistical Evaluation

Test Problem 2

True Objective Function                                         Statistical Evaluation

NWLoc0Mer0
NWLoc0Mer1

Level
   300
   300

Count
  95154.5
  85145.5

Score Sum
 317.182
 283.818

Score Mean
  2.357
 -2.357

(Mean-Mean0)/Std0

  85145.5
S

-2.35695
Z

0.0184
Prob>|Z|

2-Sample Test, Normal Approximation

   5.5563

ChiSquare

     1

DF

0.0184

Prob>ChiSq

1-way Test, ChiSquare Approximation

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

NWLoc0Mer0
NWLoc0Mer1

Level
   300
   300

Count
  92768.5
  87531.5

Score Sum
 309.228
 291.772

Score Mean
  1.233
 -1.233

(Mean-Mean0)/Std0

  87531.5
S

-1.23311
Z

0.2175
Prob>|Z|

2-Sample Test, Normal Approximation

   1.5211

ChiSquare

     1

DF

0.2174

Prob>ChiSq

1-way Test, ChiSquare Approximation

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)
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Combined Norm                                            Statistical Evaluation

Test Problem 3

R&S Design 75907090                               R&S Design 100908090 

R&S Design 100958095

KrigLoc0Mer0
KrigLoc0Mer1
KrigLoc1Mer0

KrigLoc1Mer1
NWLoc0Mer0
NWLoc0Mer1

NWLoc1Mer0
NWLoc1Mer1
None

Level
0.151032
 0.08946

0.143989

0.209987
0.099442
0.100061

0.095384
0.453216
0.098791

10%
0.231649
0.134483
0.209848

0.468505
0.140174
0.139356

 0.14602
0.617499
 0.13674

25%
0.388473
0.164621
0.377724

1.936635
 0.16351
0.167373

0.178425
0.799459
0.168278

Median
0.439145
0.209701
0.441052

1.967288
0.205942
0.211763

0.413017
1.309955
 0.20796

75%
0.460418
0.282843
0.457555

1.990095
0.346286
0.415791

0.483606
 1.99575
0.322285

90%

Quantiles
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Test Problem 3

True Objective Function                                         Statistical Evaluation

KrigLoc0Mer0 and KrigLoc1Mer0 Comparison

Normed Distance                                            Statistical Evaluation

KrigLoc0Mer0
KrigLoc1Mer0

Level
   300
   300

Count
  91710.5
  88589.5

Score Sum
 305.702
 295.298

Score Mean
  0.735
 -0.735

(Mean-Mean0)/Std0

  88589.5
S

-0.73478
Z

0.4625
Prob>|Z|

2-Sample Test, Normal Approximation

   0.5402

ChiSquare

     1

DF

0.4623

Prob>ChiSq

1-way Test, ChiSquare Approximation

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

KrigLoc0Mer0
KrigLoc1Mer0

Level

   300
   300

Count

  91123.5
  89176.5

Score Sum

 303.745
 297.255

Score Mean

  0.458
 -0.458

(Mean-Mean0)/Std0

  89176.5

S

-0.45829

Z

0.6467

Prob>|Z|

2-Sample Test, Normal Approximation

   0.2103
ChiSquare

     1
DF

0.6466
Prob>ChiSq

1-way Test, ChiSquare Approximation

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)
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NWLoc0Mer0, NWLoc0Mer1 and None Comparison

Normed Distance                                            Statistical Evaluation

Test Problem 3

True Objective Function                                         Statistical Evaluation

NWLoc0Mer0

NWLoc0Mer1
None

Level

   300

   300
   300

Count

   134265

   137605
   133580

Score Sum

 447.550

 458.683
 445.267

Score Mean

 -0.241

  0.668
 -0.427

(Mean-Mean0)/Std0

   0.4575

ChiSquare

     2

DF

0.7955

Prob>ChiSq

1-way Test, ChiSquare Approximation

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)

NWLoc0Mer0

NWLoc0Mer1
None

Level
   300

   300
   300

Count
   137090

   136225
   132135

Score Sum
 456.967

 454.083
 440.450

Score Mean
  0.528

  0.292
 -0.820

(Mean-Mean0)/Std0

   0.6911
ChiSquare

     2
DF

0.7078
Prob>ChiSq

1-way Test, ChiSquare Approximation

Wilcoxon / Kruskal-Wallis Tests (Rank Sums)
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A.4 R&S Procedure Adjustment Results

Original R&S Procedure                                     Modified R&S Procedure

Test Problem 1

Original R&S Procedure                                     Modified R&S Procedure

KrigLoc0Mer0

KrigLoc0Mer1

KrigLoc1Mer0

KrigLoc1Mer1

NWLoc0Mer0

NWLoc0Mer1

NWLoc1Mer0

NWLoc1Mer1

None

Level

-0.92598

-0.92956

-0.96011

-0.22095

-1.03187

 -0.9934

-0.84534

-0.84282

-1.03203

10%

-0.48503

 -0.3034

-0.60645

0.203327

-0.70592

-0.69384

-0.04441

-0.07153

-0.63705

25%

0.108955

0.296775

0.075999

  2.2827

0.039461

0.051803

0.309025

 0.54272

0.056497

Median

0.422495

1.209625

 0.42025

  21.342

0.305915

 0.29853

0.798075

  1.6254

0.271562

75%

 1.06597

 6.00277

 1.16797

 61.1114

0.650844

0.754418

 1.38523

  3.8815

  0.5642

90%

Quantiles

KrigLoc0Mer0

KrigLoc0Mer1

KrigLoc1Mer0

KrigLoc1Mer1

NWLoc0Mer0

NWLoc0Mer1

NWLoc1Mer0

NWLoc1Mer1

None

Level

0.018823

0.045361

0.010442

0.104037

0.011117

0.009573

0.071668

0.073508

0.007281

10%

  0.0795

0.130981

0.066388

0.349397

0.047069

0.052716

0.168019

0.224128

0.032205

25%

0.190926

0.401911

0.160579

2.862748

0.136719

0.134433

 0.47774

0.690541

0.137564

Median

0.526644

1.372592

0.532767

357.4401

0.349507

0.419762

1.019575

1.903625

0.332082

75%

1.316783

26.00287

1.377032

604.1474

 0.80145

1.070177

2.076141

6.811658

0.855352

90%

Quantiles

ModKrigLoc0Mer0

ModKrigLoc0Mer1

ModKrigLoc1Mer0

ModKrigLoc1Mer1

ModNWLoc0Mer0

ModNWLoc0Mer1

ModNWLoc1Mer0

ModNWLoc1Mer1

ModNone

Level

0.030646

0.025844

0.024298

0.051976

 0.02277

0.018738

0.079722

0.054815

0.017621

10%

0.079851

 0.07554

0.071111

0.112076

0.063947

0.067017

0.176804

0.146886

0.048951

25%

0.231983

0.247169

0.165326

0.340956

0.147813

 0.15843

0.395631

0.319635

0.147823

Median

0.473079

0.514493

0.372709

1.024658

0.299645

0.313768

0.864855

0.721275

0.298284

75%

0.758084

3.131908

0.731697

4.294366

0.500168

0.607162

1.714046

1.344146

0.559412

90%

Quantiles

ModKrigLoc0Mer0

ModKrigLoc0Mer1

ModKrigLoc1Mer0

ModKrigLoc1Mer1

ModNWLoc0Mer0

ModNWLoc0Mer1

ModNWLoc1Mer0

ModNWLoc1Mer1

ModNone

Level

-0.71699

-0.72035

-0.76898

-0.61419

-0.74421

-0.70982

-0.59256

-0.62639

 -0.7617

10%

-0.48209

-0.48262

-0.54724

-0.38221

-0.53765

-0.52729

-0.30514

-0.40874

-0.55659

25%

-0.26268

-0.20144

-0.28862

-0.01834

-0.31666

-0.31498

0.004371

-0.10498

-0.33704

Median

 0.05637

0.212612

-0.02475

0.585703

-0.12487

-0.05775

 0.54728

0.283445

-0.09477

75%

0.441054

 2.54073

0.223169

 2.54866

0.157835

0.230275

 1.27644

0.963726

0.213755

90%

Quantiles
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Original R&S Procedure                                     Modified R&S Procedure

Test Problem 2

Original R&S Procedure                                     Modified R&S Procedure

KrigLoc0Mer0

KrigLoc0Mer1

KrigLoc1Mer0
KrigLoc1Mer1

NWLoc0Mer0

NWLoc0Mer1

NWLoc1Mer0

NWLoc1Mer1

None

Level

0.121571

0.168234

 0.11768
0.179431

0.153532

0.142914

0.113322

0.067966

0.053698

10%

0.267207

0.335471

0.252543
0.400148

0.298775

0.259851

0.243978

 0.21262

0.116962

25%

0.641923

0.692988

0.655294
0.786821

0.637065

0.609259

0.526066

 0.38459

0.204723

Median

 1.19316

1.573814

1.145067
1.611666

1.181302

1.050145

 0.96028

0.742093

0.344811

75%

2.082607

3.395072

1.739752
3.135825

1.859797

1.688589

1.697488

1.393495

0.539051

90%

Quantiles

KrigLoc0Mer0

KrigLoc0Mer1

KrigLoc1Mer0

KrigLoc1Mer1

NWLoc0Mer0

NWLoc0Mer1

NWLoc1Mer0

NWLoc1Mer1

None

Level

-0.99971

-0.98078

-1.02275

-0.74777

-1.04465

-1.01137

-0.98489

-1.04346

-1.21618

10%

-0.81612

-0.69523

-0.77672

-0.22311

-0.82505

-0.77523

-0.73111

-0.80376

-1.07108

25%

-0.28567

0.027073

-0.18204

0.407095

-0.31495

-0.41217

-0.11371

-0.03194

-0.90685

Median

0.535453

 0.97654

0.432145

1.128875

0.438325

0.260085

0.434955

0.347608

-0.72816

75%

 1.27745

 3.04455

 1.27745

 2.79799

 1.18745

0.907198

 1.06983

0.789408

-0.50436

90%

Quantiles

ModKrigLoc0Mer0

ModKrigLoc0Mer1

ModKrigLoc1Mer0

ModKrigLoc1Mer1

ModNWLoc0Mer0

ModNWLoc0Mer1

ModNWLoc1Mer0

ModNWLoc1Mer1

ModNone

Level

0.086734

0.083585

0.088778

0.083698

0.091718

 0.09876

0.053335

0.057252

0.046082

10%

0.202793

0.218244

0.195346

0.176274

0.176525

0.186555

0.138543

0.123268

0.075756

25%

0.433352

0.551076

 0.42009

0.348271

0.383691

0.371616

0.311351

0.252135

0.133034

Median

0.885896

1.036486

0.767944

0.723024

0.719563

0.752262

0.542609

0.531049

0.227792

75%

1.629481

1.942927

1.258362

1.455409

1.185811

 1.25283

0.907939

0.969244

0.367479

90%

Quantiles

ModKrigLoc0Mer0

ModKrigLoc0Mer1

ModKrigLoc1Mer0

ModKrigLoc1Mer1

ModNWLoc0Mer0

ModNWLoc0Mer1

ModNWLoc1Mer0

ModNWLoc1Mer1

ModNone

Level

-0.62332

-0.63772

-0.61278

 -0.7032

-0.64132

-0.63451

-0.71671

-0.71786

-0.81529

10%

-0.43376

-0.35651

-0.40637

-0.43528

-0.42817

-0.40867

-0.46036

-0.50881

-0.62446

25%

-0.12279

-0.07594

-0.11949

-0.16037

-0.12803

-0.15459

-0.24761

-0.26754

-0.42919

Median

 0.30105

0.419698

0.196968

0.238968

0.231753

0.228718

-0.00233

 -0.0155

-0.23596

75%

0.923555

 1.60339

0.647549

0.926588

0.691485

0.579323

0.223772

0.391129

-0.05539

90%

Quantiles
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Original R&S Procedure                                     Modified R&S Procedure

Test Problem 3

Original R&S Procedure                                     Modified R&S Procedure

KrigLoc0Mer0

KrigLoc0Mer1

KrigLoc1Mer0
KrigLoc1Mer1

NWLoc0Mer0

NWLoc0Mer1

NWLoc1Mer0

NWLoc1Mer1

None

Level

0.083977

0.060742

0.065662
1.453449

0.064632

0.059321

0.069852

0.190882

0.051898

10%

0.136903

0.135336

 0.11535
4.023265

0.138931

0.137515

0.145779

0.319809

0.118992

25%

0.224262

0.346403

0.233313
4.914021

0.265122

0.276099

0.321323

0.598734

0.249486

Median

0.412913

0.772988

 0.42132
7.322987

0.525214

0.462575

0.589814

1.437462

0.501742

75%

0.713729

28.51369

0.660879
10.35761

0.814552

0.746003

0.940543

3.995306

0.847007

90%

Quantiles

KrigLoc0Mer0

KrigLoc0Mer1

KrigLoc1Mer0

KrigLoc1Mer1

NWLoc0Mer0

NWLoc0Mer1

NWLoc1Mer0

NWLoc1Mer1

None

Level

-0.98024

-0.93332

-0.96404

 1.20548

-0.88065

-0.93165

-0.86524

 -0.7328

-0.90168

10%

-0.63477

  -0.443

-0.67035

3.736325

-0.48029

-0.58655

-0.47518

-0.31747

-0.55789

25%

0.063467

  0.1088

0.062208

  4.7131

 0.08402

0.074842

0.095374

0.362165

0.075631

Median

0.206845

0.514598

0.263853

 7.03615

0.256855

  0.2668

0.347477

  1.3743

0.290478

75%

0.474602

  28.513

0.522427

 10.3296

0.569916

0.510292

0.721095

 3.82338

0.540055

90%

Quantiles

ModKrigLoc0Mer0

ModKrigLoc0Mer1

ModKrigLoc1Mer0
ModKrigLoc1Mer1

ModNWLoc0Mer0

ModNWLoc0Mer1

ModNWLoc1Mer0

ModNWLoc1Mer1

ModNone

Level

0.075942

 0.06924

0.077771
3.840532

0.055592

0.049932

0.079445

0.173232

0.043354

10%

0.116269

0.115305

0.129834
3.894317

0.111516

0.109708

0.133717

0.238003

0.086942

25%

0.181236

0.238733

0.208359
4.012275

0.217124

0.229312

0.284633

 0.36267

0.187836

Median

0.322895

0.506078

 0.39016
4.178733

0.389035

0.401238

0.491141

0.586544

0.356152

75%

0.546881

1.943926

0.581663
4.407357

0.601266

0.606474

1.396926

1.377932

0.507798

90%

Quantiles

ModKrigLoc0Mer0

ModKrigLoc0Mer1

ModKrigLoc1Mer0

ModKrigLoc1Mer1

ModNWLoc0Mer0

ModNWLoc0Mer1

ModNWLoc1Mer0

ModNWLoc1Mer1

ModNone

Level

-0.74184

-0.73613

-0.67427

  2.9276

-0.72207

-0.73923

-0.62331

-0.55912

-0.81668

10%

-0.52022

-0.50058

-0.49466

 3.24875

-0.50959

-0.50484

-0.43377

-0.34954

-0.57386

25%

 -0.2917

-0.23317

 -0.3006

 3.48945

-0.31232

-0.27814

-0.19472

 -0.1136

-0.35295

Median

-0.06141

0.048396

-0.07138

  3.7756

-0.09491

-0.05958

0.135865

0.139703

-0.09683

75%

0.174166

 2.84933

0.167302

 4.06281

0.205445

0.203608

0.873579

0.733484

0.136145

90%

Quantiles
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A.5 Modified Main Run Data Summary

Test Problem 1

Combined Norm                                            Statistical Evaluation

R&S Design 75907090                               R&S Design 100908090 

R&S Design 100958095

ModKrigLoc0Mer0

ModKrigLoc0Mer1

ModKrigLoc1Mer0

ModKrigLoc1Mer1

ModNWLoc0Mer0

ModNWLoc0Mer1

ModNWLoc1Mer0

ModNWLoc1Mer1
ModNone

Level

0.183082

0.183303

0.184885

0.216324

0.169529

0.164824

0.325078

0.234517
0.144165

10%

0.279589

0.289063

0.276269

0.373294

0.241604

0.246897

0.518189

0.429105
0.223778

25%

0.462733

0.512681

0.446392

0.631855

0.383253

0.379482

0.767995

0.653339
0.336995

Median

0.696756

0.846654

0.648276

1.066242

0.560456

0.557653

1.073243

0.981983
 0.51306

75%

 0.97981

1.272726

0.894085

1.705945

0.734748

0.764497

1.337804

1.233132
0.770634

90%

Quantiles
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Combined Norm                                            Statistical Evaluation

Test Problem 2

R&S Design 75907090                               R&S Design 100908090 

R&S Design 100958095

ModKrigLoc0Mer0

ModKrigLoc0Mer1

ModKrigLoc1Mer0

ModKrigLoc1Mer1

ModNWLoc0Mer0

ModNWLoc0Mer1

ModNWLoc1Mer0

ModNWLoc1Mer1

ModNone

Level

 2.81051

2.585913

2.712457

2.411108

2.705639

2.811929

2.457249

2.406234

1.768445

10%

4.113336

3.983391

3.865991

3.936627

4.508757

4.430229

4.099972

3.893905

2.523795

25%

6.068051

 6.76084

6.551751

6.042433

7.173094

6.852268

6.249081

6.000206

3.093501

Median

9.030545

9.375185

8.911808

8.523032

10.00994

9.626155

8.716219

9.219319

3.766776

75%

11.43659

12.49002

11.53997

11.51943

13.44253

12.01134

10.79959

12.11883

4.763328

90%

Quantiles
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Combined Norm                                            Statistical Evaluation

Test Problem 3

R&S Design 75907090                               R&S Design 100908090 

R&S Design 100958095

ModKrigLoc0Mer0

ModKrigLoc0Mer1
ModKrigLoc1Mer0

ModKrigLoc1Mer1

ModNWLoc0Mer0

ModNWLoc0Mer1

ModNWLoc1Mer0

ModNWLoc1Mer1

ModNone

Level

0.131378

0.077898
0.138444

1.951534

0.051673

0.049727

0.081499

   0.441

  0.0839

10%

0.199246

0.120507
0.198441

1.966005

 0.09949

  0.0954

0.154015

0.563356

0.127854

25%

0.355268

0.154298
0.346302

1.981919

0.173924

0.166327

0.266646

0.662058

0.165218

Median

0.433448

0.216067
 0.43218

1.995479

0.287299

0.275793

0.464458

0.750048

0.226187

75%

0.474734

 0.37532
0.474837

2.006684

0.451325

0.396389

1.211394

1.274063

0.395346

90%

Quantiles
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